
C–1

Common Weaknesses of Android Malware Analysis
Frameworks

Lars Richter
University of Erlangen-Nuremberg

Abstract—In order to evade anti-malware products of different
vendors, Android malware authors are seeking for possibilities
to gain information about the execution environment of their
applications. So called split-personality malware loads additional
code during runtime to prevent detection by offline code analysis
e.g. the Google Bouncer. To evade detection during runtime it
behaves like a normal app and analyzes its environment at first.
If an analysis environment can be excluded the app will load
and execute the malicious code. To prevent such analysis by
malware an Android sandbox seeks to simulate the real smart
phone as close as possible and leaves minimum trace of the vir-
tualization. In previous work different Android sandboxes where
fingerprinted to detect the analysis environment. In this paper we
are building on these findings to present and categorize different
weaknesses of Android malware analysis frameworks. With that
knowledge it is possible to improve Android sandboxes to spoof
e.g. split-personality applications to execute their malicious code
and thus detect them.

I. INTRODUCTION

With its market share of 78% in shipped units Android is
dominating the smartphone market in the first quarter of 2015.
Without a doubt Android has become the most popular Oper-
ating System for smartphones and tablets. With the increase
of computing power and rising functionality of the operating
system and its applications, people rely on these devices for
all Internet-related subjects. From messaging to shopping and
banking, users confide their mobile computers their personal
secrets and login credentials. Criminals are taking advantage
of that trust with more and more sophisticated malware. In
contrast to other smartphone operating systems android allows
the user to install software from unverified sources. This is
on the one hand a big advantage over the other systems,
because the user can decide which software he wants to install
without loosing the warranty of the device. As a consequence,
multiple app stores for Android devices exist. On the other
hand enables such an distributed ecosystem multiple starting
points for spreading malicious software AndRadar. Each store
has to deal with malicious applications and must detect them
to preserve their reputation.

A. Motivation

According to recent studies over 2000 new malicious appli-
cations are discovered everyday[36]. It is obvious that there
is no possibility to detect such a number of new malware

This paper was written as part of the conference seminar ”IT Security”
which was organized by the Chair for IT Security Infrastructures (Prof. Dr. F.
Freiling) at the University of Erlangen-Nuremberg during summer term 2015

manually. Google developed the Bouncer as a first action
to detect malware. The Bouncer is a service that analysis
every submitted application to the Google Play Store. If
an application is seen as malicious it is rejected and the
developers account, and all accounts issued from that IP, will
be automatically banned [24]. According to Google the intro-
duction of the Bouncer resulted in a 40% reduce of malware
in the store [14]. Alternative markets which do not have such
anti malware measures in place contain 5-8% malicious apps
[18]. To analyze newly submitted applications and to detect
malware, multiple automated frameworks were developed by
researches and security companies [1][16][17][28][34][40].
These anti malware frameworks are using different approaches
and detection mechanism. In a recent study, multiple mal-
ware analysis frameworks were compared according to their
analysis approach, technical / logical scope, delicateness to
known bugs, behavior representation and detection [23]. Each
analysis approach has its advantages and disadvantages. But
there is also malware which can not be detected with known
frameworks [19]. Highly sophisticated malware can simulate
benign behavior and executes its malicious hidden content, if
it is installed on an non analysis environment. Because of the
heterogeneous and diverse analysis frameworks the reasons
malware remain undetected are numerous.

B. Contribution

In this paper we are investigating the reasons some malware
stays undetected in some analysis environments. We charac-
terize the different analysis types, we present some popular
frameworks which are based on these types and we describe
some drawbacks of each analysis type. One disadvantage of
the static analysis is e.g. the inability to scan highly obfuscated
code. Transformations form the basis of the obfuscation and
they are described in section III. In the following section
IV we demonstrate the numerous possibilities an Android
application can fingerprint its host. It becomes clear that it
is a serious task to trick an application into believing it is
executed on an physical host during the dynamic analysis
to observe its malicious behavior. Most analysis approaches
assume that an applications is fully sandboxed and can not
communicate with other applications to gain higher privileges.
In section V we give an overview about common communica-
tion channels caused by application collusion and the risks. A
further difficult malware behavior is described in section VI.
Unforeseeable Events, like external events or timing events
can not be simulated due to their complexity or resource



C–2

limitations. Malware can use these events to trigger mali-
cious behavior. We present an introduction to HARVESTER,
which claims to be able to defeat these mechanism. As an
prospect to related and for future work we summarize in
section VII improvements of the different analysis methods to
overcome the listed weaknesses. We characterize the approach
of the BareCloud as one solution to benefit from the highly
fragmented malware analysis environment. The investigations
scope is limited to the referenced literature.

C. Related Work
Poeplau et al. [26] developed a static analysis tool for de-

tecting dynamic code loading of Android applications during
runtime. They performed a study with that analysis and they
found out, that 8 of the top 50 free Android applications
are using dynamic code loading. They also showed that
code loading can exploit a conceptional weakness of analysis
frameworks.

Another research field are the possible communication chan-
nels which are used by colluding applications on an Android
smartphone. Schlegel et al. [32] presented Soundcomber as
a first Trojan which uses covert communication channels to
exchange information. Therefore the Trojan itself is only using
a small amount of permissions. Another application is waiting
for the data on the covert channel to send it over the network.
Both applications in particular are unsuspicious, but when
combined, they pose a serious threat. Marforio et al. [20]
analyzed the possibilities to use communication channels to
transfer data between colluding applications. Analysis tools
failed to detect the data exchange. Therefore they conclude
that covert communication channels are a threat to smartphone
security. Mazurczyk and Caviglione [21] complemented the
work of Marforio et al. They survey the different methods
and approaches to hide information on the smartphone. They
also reviewed the methods according to detection possibilities.

Rastogi, Chen and Jiang developed the DroidChameleon
[30], a systematic framework to evade detection by static
analysis frameworks. They describe different transformation
attacks to reduce the signatures commercial anti malware
tools can detect. They state that simple transformations are
successful because most analysis tools are searching for known
signatures and are prone transformation attacks.

Another possibility to evade detection by analysis systems
is to fingerprint the analysis environment first and hide the
malicious intent of the application. Petsas et al. [25] presented
detection heuristics of dynamic analysis environments of three
categories, static properties, dynamic sensor information and
VM-related complications. With the help of these heuristics
they were able to avoid detection of analysis systems. Vi-
das and Christin [31] [39] also showed different techniques
for detecting Android analysis systems. They classified their
approaches into behavior, performance, hardware- / software-
components and analysis system design choices. They evalu-
ated the detecting techniques against the analysis frameworks
Andrubis, CopperDroid and ForeSafe. Maier, Müller and Prot-
senko [19] demonstrated how malware can evade analysis sys-
tems and presented a tool for fingerprinting multiple Android-
based analysis systems. They where able to create a malware

that successfully surpasses existing malware scanners and they
successfully bypassed the Google Bouncer by uploading a
modified Android root exploit. Balzotti et al. [3] presented
a first approach for Android which is able to detect split-
personality malware, by executing the malware in an emulator
and on an uninstrumented reference system.

Malware analysis systems can by divided into static and
dynamic analysis systems. Drebin [1] performs a fast broad
static analysis on the phone during runtime, and searches for
patterns of malicious applications with the help of machine
learning. Like Drebin is Marvin [16] another on-device anal-
ysis tool. It is using similar approach to classify applications
based on a set of features which are extracted during a static
and dynamic analysis. For the dynamic analysis the application
file in question is submitted via a web interface or the Marvin
application itself.

The dynamic analyzes executes the malware in a monitored
and often sandboxed environment. Hybrid approaches are us-
ing static analysis to improve the dynamic execution. Andrubis
[17] is a fully automated hybrid analysis systems. Andrubis
is publicly available and was able to collect analysis data of
over 1 million applications, where 40% had a malicious intend.
That dataset is used to discuss trends in applications behavior
to differentiate between benign and malicious. Andlantis [4]
is a highly scalable dynamic analysis frameworks which is
able to schedule and analyze thousands of Android instances
in parallel to make best use of the limited computational
resources. To detect privilege escalation attacks through covert
channels XManDroid [5] extends the monitoring mechanisms
of Android. The implementation dynamically analyzes the
permission usage of the different applications and commu-
nication links between the applications. TaintDroid [8] is an
information tracking analysis system which monitors multi-
ple sources of sensitive data. With TaintDroid it is possible
to detect possible misuse of sensitive data by third party
applications. Another taint analysis framework is FlowDroid
[35] which monitors callbacks by the Android framework and
uses context, flow, field and object-sensitivity to reduce the
number of false positives. The Mobile-Sandbox by Michael
Spreitzenbarth et al. [34] is also a hybrid analysis approach.
The static analysis is used to reach higher code coverage
during the dynamic analysis. Additionally it uses specific
techniques to log native API calls, which can be used to hide
malicious content. They found that the existence of native code
calls does not imply that the application is malicious.

The BareCloud [15] is an automated evasive malware de-
tection system which is using multiple analysis approaches,
including a bare-metal reference system. It observes the
malware behavior on the different systems and compares
them to detect split-personality malware. This approach is
focused on Windows malware. Balzotti et al. [3] presented
a similar approach to detect Android malware. Rasthofer et
al. developed the HARVESTER [28], which is an approach
to defeat split personality malware. It uses program slicing
and dynamic execution to extract runtime values from any
position in the Java bytecode. This analysis approach is very
effective against highly obfuscated malware which uses timing
and logic bombs.



C–3

Other researchers analyzed and compared multiple frame-
works with each other. That research is used to get an
overview about the similarities and differences of the anal-
ysis approaches. Fedler, Schütte and Kulicke [10] evaluated
multiple antivirus applications in regards to their analysis
approach and detection rate. They conclude that antivirus
software may be reliable to detect long-known threats but the
capability to detect new threats or variants of existing malware
is limited. Neuner et al. [23] compared 10 dynamic Android
analysis sandboxes in terms of feature support and the ana-
lyzed application properties. They evaluated their effectiveness
with known malware samples and Android bugs. Lindorfer
et al. presented with AndRadar a framework for discovering
malicious applications in different Android markets to expose
the distribution strategies of malware authors. They evaluated
how fast markets detect and delete malware.

II. CATEGORIZATION

As previously motivated there is a need for analyzing
smartphone applications. In general the analysis can be dif-
ferentiated into static and dynamic analysis. The use of both
techniques is called hybrid analysis.

A. Static Analysis

The static analysis covers aspects of the application without
actually executing them. A key artifact which is analyzed
by many frameworks is the manifest file which is required
by the application. The AndroidManifest1 provides meta in-
formation about the unique package name, used activities,
services, broadcast receivers and content providers. It names
classes which implement these components and publishes
their capabilities. With that information the Android system
knows under which condition each component has to be
launched. Additionally the manifest defines which permissions
are needed to access protected parts of the API. The access
to specified hardware components can be an indicator of ma-
licious behavior. A well known example is the torch app[33]
which requests GPS and network access to send the users
location data to the attacker. Another hint for malware is the
SEND SMS permission which is often used to send premium
SMS.

Another approach is to analyze the byte code of the ap-
plications. Since the code is not executed, and no variables
are set, it can not be decided which paths will be taken
by the application. With the help of graphs analysts can
understand the inner working of an application and how
the code blocks are connected [13]. Suspicious API calls
which access sensitive information can be detected with that
approach. API calls which encrypt or decrypt data or execute
external code are often used for code obfuscation but can also
be detected with the static analysis [1]. Obfuscation will be
discussed in detail in section III. External code can be found by
checking each resources file type in the Android Application
Package (APK). Malware hides often libraries in seemingly
benign external files to avoid detection of suspicious API calls.

1https://developer.android.com/guide/topics/manifest/manifest-intro.html

Android programs are compiled into Dalvik Executable Files
(.dex Files). The dissembled .dex files can be searched for
strings. These strings can be scanned for IP addresses, which
could point to command & control servers or data sinks for
private information. A well known tool for static code analysis
is Androguard which disassembles and decompiles Dalvik
byte code to Java Source Code. Frameworks like Tracedroid,
Andrubis and Sanddroid are using that static code analyzer
[23].

B. Dynamic Analysis

The dynamic analysis approach involves the execution of the
application on either a virtual machine or a physical device.
During the analysis, the behavior of the application is observed
and can be analyzed. The dynamic analysis results in a less
abstract view of the application than the static analysis. The
code paths executed during runtime are a subset of all available
paths. The main goal for analysis frameworks is to reach
high code coverage because all possible actions should be
triggered to observe any possible malicious behavior. Research
has shown that fully randomized input achieves a 40% or
lower code coverage. [12] Multipath execution is a way to
increase the code coverage. Whenever a branch is taken, the
current state of the VM is saved in a snapshot so that it can be
rolled back and execute the other branch. However this is only
partially applicable because this behavior much likely breaks
network protocols. [22] Depending on the data of interest,
different techniques exist to monitor the applications behavior.
One analysis technique is taint tracking. A system wide
implemented taint propagation is able to analyze the message
flow and potential misuse of private sensitive information
through third-party applications [23]. A popular framework
which uses that technique is TaintDroid. Developed with the
Dalvik Virtual Machine, it monitors how applications access
and manipulate user data in real time. It labels the sensitive
data as it flows through variables, files and messages. However
TaintDroid is only able to detect explicit data flow and is
not able to analyze implicit flow through control flow. Private
information could be transmitted over that channel. [8]

Another analysis technique is virtual machine introspection
(VMI) which is used to intercept events within the emulated
environment. It is also used to monitor the execution of
the Android API. VMI is either possible by modifying the
Dalvik VM or by using the QEMU emulator itself. A further
possibility to collect executed system calls is the standard
Linux library trace tool ltrace used by the Mobile Sandbox
[34].

C. Discussion

Static code analysis can be used to get an overview of the
applications but is very abstract. It can be used to reveal the
leakage of sensitive information, inter process communication,
network communication and cryptography misuse and more
[9]. However the static analysis can be tricked by obfuscation
techniques. Dynamic approaches on the other side can deliver
precise results because runtime data and values are available
and can be retrieved. But that data depends highly on the taken



C–4

code paths in contrast to the results from the static analysis,
which are produced by the whole codebase. Therefore the
best approach is the hybrid approach which uses static code
analysis to gather information to improve the outcome of
the dynamic analysis. Andrubis for example compares the
requested permissions in the manifest with the permissions
that are requested in the byte code, as well as the used ones
during the execution in the dynamic analysis [17].

III. CODE OBFUSCATION

The goal of code obfuscation is to prevent static code
analysis. Code obfuscation alone can not prevent detection
of malicious behavior through dynamic analysis because the
code will be deobfuscated during execution and therefore the
function calls and values can be monitored. We will describe
a small number of transformation attacks which sufficiently
hinder the analysis by static analysis frameworks.

A. Trivial Transformations

Trivial transformations are mainly attacking signature based
detection approaches. Android packages are signed zip files.
These packages can be unzipped, repacked again and signed
with a custom key. In addition the package name can be
altered. The detection approaches which are based on the
package signature or a hash of the complete app will fail.
Signatures on the bytecode can be defeated with disassem-
bling, reordering and reassembling again. Signatures based on
single items will be unusable. [31]

B. Detectable Transformations

Some transformation attacks can be revealed by the data
flow, which is not altered by these attacks. These transforma-
tions are detectable by Static Analysis (DSA) [31]. Methods
for DSA transformation attacks are renaming of static strings
(such as classnames and methodnames), code reordering,
changing of the call directions, junk code insertion, data
encoding and encrypting payloads and native code exploits.
The last method describes the hiding of native code exploits
in non standard locations in the applications package. These
exploits are stored encrypted an will be decrypted during
runtime. This method differs from the Bytecode Encryption
attack, which is a non-detectable transformation attack because
the main application can still be analyzed. [31]

C. Non-Detectable Transformations

These methods are preventing the static code analysis. The
analysis could detect that the following methods are executed
but it can not decide whether its cause is benign or malicious.
It would result in a high false positive rate.

The Java Reflection API allows to modify the runtime
behavior of applications.2 The method call could be changed
into any other call during execution. This defeats the data flow
analysis of static frameworks.

2https://docs.oracle.com/javase/tutorial/reflect/index.html

Another transformation is Bytecode Encryption. The main
function of the application is stored in a separate dex file in
encrypted form. The only parseable code is the decryption
routine. With the help of the DexClassLoader the external dex
file can be loaded and executed. Analysis frameworks could
detect the usage of the DexClassLoader but only a dynamic
analysis system can investigate the behavior further.

The DexClassLoader can be used to execute downloaded
code too. Benign applications use that procedure to install
add-ons so it cannot be flagged as malicious by default. In
addition applications can directly request the installation of a
downloaded APK which prompts the user a dialog. Poeplau
et al. exploited that method to build an application which
downloads and executes malicious code [26]. Their app was
not detected as malicious by the Google Bouncer or any anti
virus application.

D. Discussion

The transformation attacks are a significant threat to static
analysis frameworks. Simple package and identifier renaming
techniques allow evasion of some analysis tools. More sophis-
ticated methods can be used to thwart the analysis. [31]

An example for applied code obfuscation techniques is the
Android/BadAccents malware. The malware is using email for
sending sensitive user data. The malware analyst is interested
in the specific API calls for sending the email. Therefore he
searches with the help of static code analysis for these API
calls. But the malware is saving the sensitive information as
native code. Static and forward analysis can not be used to
extract the values from ARM native code, therefore the API
call information will remain undetected. [29]

Poeplau et al. described code injection against benign
applications [26]. The application developers are in duty to
check if their downloaded code is integer and authentic.
The technical understanding for the security risks is often
not existent or there is no business value in securing their
applications. In consequence an attacker is able to replace
downloaded code with its own malicious code. This could
happen during insecure HTTP downloads, on the unprotected
storage on the smartphone or the improper use of package
names. With that code injection technique the attacker can
use the allowed permissions of the benign app to gather
sensitive information to his own benefit. The risks of external
code execution are often underestimated. The attack vector of
exploiting known benign applications or underlying libraries
by injecting malicious code is not observed by current analysis
frameworks.

IV. FINGERPRINTING

As already mentioned static analysis approaches can be
made useless with code obfuscation. Code obfuscation can be
defeated with the dynamic analysis approach. Highly sophisti-
cated malware could be able to detect the monitoring and thus
take actions to prevent the analysis of its malicious behavior.
This method is called Fingerprinting and will be described in
the following.



C–5

A. Problem Statement

In contrast to desktop PCs the operating system of a
smartphone is aware of the build-in hardware because it is
not replaceable. There is no need to support modular hard-
ware. In consequence many different kernels to support the
different devices, specialized to each hardware configuration,
are existing. If an app is installed on a normal smartphone,
it expects that it can use the camera, GSM modem, GPS and
other sensors.

In a desktop PC environment analysis frameworks could
simply disable the network card because there are computers
which are not connected to any network, and malware authors
could target these PCs too. But it is very uncommon that a
smartphone got a disabled GPS sensor or camera. Even more
suspicious is GPS data which is fully randomized or camera
pictures which are always the same. Analysis environments
should be indistinguishable from the real device.

The problem is, that in contrast to PC sandboxes, all sensors
and hardware components must behave like their counterparts
on the physical devices. There is no modularity where a
component can be disabled. E.g. a smartphone without a SIM
card would raise a red flag to malware because it is most likely
executed in a sandbox.

This task gets more difficult because of the numerous device
information, settings and saved connections. A malware author
can define numerous conditions which certainly indicate the
environment as physical device. This leads to the problem that
the malware behaves benign in an analysis environment and
malicious at physical devices [3]. Maier, Müller and Protsenko
presented Sand-Finger a tool that finds characteristics where
analysis environments differ from the real device [19]. They
cannot find any sandbox which is indistinguishable from real
hardware.

B. Possibilities

There are numerous possibilities to differentiate between
the real device and the virtualization environment. They can
be divided into several groups.

Sensor behavior - describes the values which are returned
by the sensors of a smartphone, e.g. GPS sensor, acceleration
sensor, brightness sensor, temperature sensor and barometer.
These values must be consistent and realistic. Temperature
changes in milliseconds are as unrealistic as a z-acceleration
by 0, which means the device is situated in zero gravity.

User interaction - is the way the sensors work together and
the user navigates through the interfaces. Many frameworks
use the Monkey Runner3 to simulate semi random user input
from a given seed. That approach is sometimes not practicable.
The malware Android/BadAccents requires the user to put in
his bank account password twice and some numbers which
have to match a defined pattern [29]. If these conditions are not
met no malicious actions will be performed. The behaviour of
the monkey runner could also be exploited. Andrubis [17] and
Tracedroid [37] are using the same seed for every execution.
The malware author can execute the monkey runner with the

3https://developer.android.com/tools/help/monkeyrunner concepts.html

same seed and save this pattern in the app. He can following
flag that behavior as suspicious and hold back any malicious
behavior and therefore prevent any detection.

Hardware Components - Since the application has access
to I/O ports, memory management chips and networking
devices, these all must be made available by the emulation
environment. CPU frequencies are available on the physical
device but are not available by default in the emulator [39].
The responses to low level calls must behave like the function
calls on the real devices.

Android API - many API methods return fixed values in
a VM. For example is the return value of Build.HARDWARE
”goldfish” in the standard Android Emulator. The combination
of some values clearly indicates that an emulator is used. [39]

Protocol implementations - differ from real devices too.
The Android Emulator cannot forward pings. In a recent study
only one out of 10 sandboxes are able to emulate a ping to
a destination [19] and is therefore an easy way to spot the
emulation.

Virtualization overhead - exists e.g. in QEMU because
of the binary translation. QEMU translates the code block
wise and executes it. During the execution of the block is no
possibility to handle an interrupt by the host OS. Therefore
it is easily detectable [11]. A solution is QEMU’s single step
mode, which defeats this detection but is noticeable slower
and again detectable[39].

Personal Information - Malicious applications could ex-
pect some personal information on the devices, like contacts,
messages, missed calls, pictures, saved WLAN networks,
paired bluetooth devices, music files or a browser history. If
some data did not exist or the samples are too old, it is much
likely an unused device and therefore not worth the risk to be
discovered by an analysis framework.

Another simple indicator for a sandbox is the uptime.
During the analysis the emulated device is often rebooted to
create a replicable environment. Normal devices are running
the whole day, so an uptime is much likely higher than 10
minutes. The most sandboxes do not manipulate the uptime
[19].

Maier, Müller, Protsenko conclude that the combination of
uptime, a hardware string and a list of connected networks is
a reliable indicator for the execution environment [19].

Petsas et al. [25] classify the described detection types into
3 categories. Static heuristics are based on static information
which are fixed values in the emulation environment. Dynamic
heuristics are based on unrealistic behavior of the sensors.
Hypervisor heuristics describe incomplete emulations of the
hardware. They evaluated multiple sandboxes for their sturdi-
ness against multiple evasion techniques.

C. Discussion

As previously stated simple measures can be taken to
detect an analysis environment. Malware authors and sandbox
developers are in an arms race to defeat each other detection
mechanisms. PC malware is not using fingerprinting methods
so intensively because PC virtualization is a standard technique
in data centers. So the malware has to be executed despite its



C–6

environment because VMs are rewarding hosts. There is no
practical use-case for smartphone virtualization to this time.
So a malware author has no intention in infecting a known
virtualized host because of the risk of detection [39].

Another way to prevent fingerprinting is to use an analysis
system which is indistinguishable from the physical host. Such
systems are known as transparent analysis systems. Cobra
[38] performs dynamic translation of the code during runtime.
Instructions which could be used to detect the virtualization
are replaced with save ones. It could only replace known
fingerprinting methods. Ether [7] uses a more transparent
approach by using the hardware virtualization of the CPU.
That virtualization comes with the cost of performance which
could be detected by timing analysis.

However malware could implement checks for anomalies
in the internal or external environment that detects analysis
frameworks. It could wait a specific time for real user activity
or trying to connect to a non existent domain. If there is
no real user interaction like long device sleeps during the
night and every non-existent domain is resolved, the analysis
environment is detected.

To avoid the fingerprinting Kirat and Vigna presented the
BareCloud [15], a bare-metal based malware detection based
on the Cuckoo Sandbox4 for Windows. The use of physical
devices instead of virtualization makes the analysis more
transparent and robust against highly specialized malware. The
approach is to execute the malware in different environments
and compare the behavioral profiles to find differences. The
assumption is that the malware successfully fingerprints one
sandbox and behaves benign to evade it. To detect differences
the malware has to show its malicious behavior in one of the
analysis systems. This system is called the reference system
and is a bare-metal system to simulate the real device as close
as possible. The BareCloud is to our knowledge the most suc-
cessful framework for detecting high sophisticated malware. It
combines bare-metal, transparent (Ether [7]), hybrid (Anubis5)
and simple emulation frameworks (Virtual Box)6 to detect
as many differences as possible in the malware behaviour to
detect sandbox evasion. Known and unknown fingerprinting
methods will fail to detect the BareCloud framework because
the reference device is a bare-metal analysis environment.
However Kirat, Vigna and Kruegel indicate that there is
a possibility to fingerprint the bare-metal device by MAC
address and the presence of the iSCSI drivers. [15]

V. APPLICATION COLLUSION

One security mechanism on Android is the permission-
based approach. An user can review the used permission by
an application and can decide if the requested permissions are
justified. The permission-based security approach suffers a big
disadvantage when it comes to application collusion. Users
are believing that they approve the requested permissions to
each application independently. Researchers have found out
that with the use of covert communication channels quite the
contrary is the situation [20] [21].

4http://www.cuckoosandbox.org
5http://anubis.iseclab.org
6http://www.virtualbox.org

A. Soundcomber

The first malware using application collusion is the Sound-
comber which records sound and sends sensitive information
with the help of a covert channel to another application. After-
wards the information is sent to a data sink within the internet
[32]. In consequence the Soundcomber itself only needs a few
and unobtrusive permissions. The application collusion attacks
are neither a software vulnerability nor related to a particular
implementation. The reason for the vulnerability itself is the
assumption that the applications are independently accessing
the available resources and are not able to communicate with
each other. Furthermore, malware analysis frameworks are
using the same assumption. Therefore application collusion
can not be detected when only one application at a time is
analyzed.

B. Overt Communication Channels

Marforio et al. classify the communication channels based
on their implementation into application, OS, hardware and
based the detection possibilities into overt and covert channels
[20]. An example for an overt application communication
channel is a shared configuration. Two applications can asyn-
chronously exchange information by using the Android API
to store and read data at an Android preference XML file7.
However the creation and querying of the preferences could
be detected when one of the two communicating applications
is installed. Another overt communication channel which can
operate without the use of special permissions are Broadcast
Intents. The source application communicates via a payload
added to broadcast messages within the system. The sink
application registers itself as receiver of these particular
broadcast messages. This communication assumes that both
applications are running synchronously. Again, this approach
can be detected by dynamic analysis frameworks because the
underlying system calls can be traced to malicious behavior.

C. Covert Communication Channels

Covert communications channels are far more sophisticated.
Schlegel et al. describe and evaluate multiple different covert
channels [32]. In contrast to some overt communication chan-
nels, covert communication channels are synchronous and
can not save data persistently. This means the communica-
tion partners have to synchronize each other before actually
exchanging information. One covert channel is the vibration
setting of the device. The data source toggle the silent mode
and the data sink interprets this binary information. The use
of the volume settings enables a higher bandwidth because
different values are possible. The achieved bandwidth rises
to 150 bps from 87 bps. A higher bandwidth of 685 bps is
reached by using file locks. Simplified, the sender locks a
file and the sink also tries to lock it. A binary ”one” is send
when the lock attempt fails and a binary ”zero” is being send
the sink gets the lock. Marforio et al. [20] extend that covert
methods. They achieved a throughput of 4324.13 bps on a

7https://developer.android.com/reference/android/content/SharedPreferences.html



C–7

Samsung Galaxy S using the type of intents8 to send data.
This channel is using the tremendous number of possibilities.
An intent can be configured with actions, flags and extra data
to exchange the data. This channel is similar to the overt
channel where the data is stored in the payload of the intent.
As described the covert communication has to be synchronized
at first. Sometimes it is crucial for malware to communicate
in milliseconds with a command and control server. Therefore
the synchronization time of the covert channel should be taken
into consideration. A high amount of data can be exchanged
through UNIX Socket Discovery [20]. This approach is based
on one synchronization and one communication socket. The
source will open the synchronization socket if the communi-
cation socket can be checked. The sink interprets the status of
the communication socket when the synchronization socket is
open. The synchronization time of this channel is around 5ms
on a Nexus One device and is able to transfer 2610bps.

D. Detection

A monitoring framework to detect covert communication
channels is TaintDroid [8]. As mentioned in Section II-B,
Taintdroid is able to track information-flow to reveal suspi-
cious actions. However, with its taint-tracking only variables,
files and interprocess messages can be monitored. Sensitive
information can be leaked through control flow. A framework
that extends the available monitoring mechanisms of android is
called XManDroid (eXtended Monitoring on Android) [5]. It
is able to analyze the permission usage of applications during
runtime to detect application-level privilege escalation attacks.
The idea is to maintain a system state which contains all
executed applications and the communication links between
them. XManDroid can approve or block these communication
links based on permanent conditions like: ”An application that
is notified about incoming or outgoing calls and can record
audio must not communicate to an application with network
access.” [5] The main task is to define rules, which are not
too strict to hinder benign applications but are strict enough to
prevent privilege escalation attacks through covert channels.

Mazurczyk and Caviglione [21] investigated further com-
munication channels, or steganography methods, which are
available on smartphones. They summarized their findings
that smartphones will become the most targeted devices for
data exfiltration because of their importance, omnipresents and
sensitive sensors. Covert channels are therefore an ideal way to
transport data. The lack of an available detection mechanisms
for covert channel exploits results in evasion of the most
malware analysis frameworks.

VI. UNFORESEEABLE EVENTS

Another challenge for dynamic analysis are events that are
so complex that they cannot easily be triggered or one might
not be able to trigger them because of the limited analysis
environment resources. A dynamic analysis must execute all
available paths to be complete. Measures like code obfuscation
or fingerprinting can be used to minimize the code coverage
of the analysis.

8https://developer.android.com/reference/android/content/Intent.html

A. External Events

External events are triggering Intents on Android. Intents
are internal events which can be used to request an action
from another app component. With the help of intent-filters9

an application can define which types of intents should be
delivered to the app component. The challenge for malware
analysis systems is to generate external events that trigger
these actions. An example intent is the receipt of a SMS.
All registered intent filters will be triggered. Therefore a
malicious application can behave benign until a certain intent
is triggered. With help of static analysis a hybrid analysis
environment can detect that the application is listening on
some intents, because they must be set in the applications
manifest. But it has no clue which special message will
trigger a special behavior. Advanced analysis frameworks like
MARVIN [16] or BareCloud [15] will flag unused intents as
suspicious.

To maximize code coverage by increasing the number of
intents fuzzy testing frameworks have been developed [27].
The Intent Fuzzer is using static analysis of the manifest
and the Dalvik bytecode to build a control flow graph with
the help of FlowDroid [35]. In the following it creates well
formed intents that will trigger these actions during a dynamic
analysis. The last step describes the generation of intents with
randomized values. With the help of random generated intents
they are able to trigger some additional behavior. However the
analysis did not scale for real world applications because all
explored paths must be kept in memory - which causes that
FlowDroid runs out of memory.

A highly sophisticated approach can use covert channels
to trigger the sleeping malware. That approach is almost
impossible to detect.

B. Timing Events

Another challenge for code analysis systems are timing
events. Because of the limited resources and the high number
of applications, each application is only tested for a short
period of time. Malware which behaves benign until a specific
date will probably not be detected if the malicious code is
sufficiently obfuscated or is loaded during runtime.

On February 3rd 2015 researches at AVAST reported that
applications which were available on the Google Play Store,
downloaded to 5-10 million devices, turned out to be malware
after 30 days of installation [2].

There exists a chance of detection with the help of hybrid
analysis approaches. The Mobile Sandbox [34] saves in the
static analysis all implemented timers and intents the appli-
cation uses. During the dynamic analysis the detected intents
will be triggered and the analysis will be executed a certain
time to trigger the implemented timers. However, if the timer
is connected to other typical user behavior like long device
sleeps during the night etc. it will not trigger the malicious
behavior.

Rasthofer et al. present HARVESTER, which allows fully
automatic extraction of runtime values from any position in

9https://developer.android.com/guide/topics/manifest/intent-filter-
element.html



C–8

the Android bytecode [28]. It is a new approach to defeat
highly obfuscated code and anti-analysis techniques (e.g. fin-
gerprinting, delayed execution, Java reflection). HARVESTER
combines static-analyzing by program slicing with dynamic
code execution. The slicing isolates the program code which
is involved in computing a specific value of interest. Other
values that do not contribute to the value are dismissed.
HARVESTER simulates the reaction to environment values the
application implements, instead of simulating the environment
values itself. Therefore HARVESTER is able to trigger differ-
ent behaviors by creating parametric slices. With these pre-
computed slices it is possible to create a reduced APK, which
contains the code that is involved in the computation of the
values of interest. Secondly the dynamic analysis executes the
reduced APK in an emulator or on a stock Android phone. All
different behaviors of the parametric slides will be triggered to
gain a complete reconstruction of the values of interest. This
approach makes the need of UI interactions unnecessary and
therefore increases the code coverage. With these mechanisms
it is possible to improve existing frameworks like TaintDroid
or FlowDroid, that cannot analyze highly obfuscated code by
the Java reflection API. An analyst can use HARVESTER
to produce an APK that only executes the slice which leaks
sensitive data. Runtime values and reflective calls are now
statically embedded. This allows the tools to discover the data
flow.

VII. IMPROVEMENTS

As previously described the detection of malware highly
depends on the level of obfuscated code and the fingerprinting
possibilities of the malware. Code obfuscation can be defeated
with the use of semantic-based analysis and dynamic code
analysis.[6] There are also some methods like time bombs,
which are only executed after a certain time has passed, or
logic bombs, that are activated by external triggers. These
methods still challenge current analysis frameworks.

With the help of semantic-based malware analysis the
program can be seen as a network of abstract instructions. This
approach is syntactic and ignores the semantic of instructions.
Therefore obfuscation methods which target pattern matching
analysis are impractical. Christodorescu et al. [6] are using
templates to describe a definition of a variable and all its
uses in the program. Because of the usage of an abstract data
flow instead of static strings the analysis is not vulnerable to
the previously described trivial and detectable transformation
attacks [31]. Nevertheless it is difficult to detect obfuscation
techniques which are based on memory reordering or changing
functions to its equivalent program instructions (e.g. replace
multiplication with arithmetic left shift).

The analyzing and slicing approach of HARVESTER is a
new and promising approach to defeat obfuscating techniques
and external event triggering. The reduced APKs which are
generated by HARVESTER can by analyzed by static analysis
tools. The detection rate of FlowDroid has been increased
by 300% with that approach for malware samples of the
Fakeinstaller.AH malware family. The slicing mechanism of
HARVESTER improves dynamic analysis frameworks too.

With its help it is possible to execute interesting code parts
directly. The analysis environment does not have to wait for
a certain time (to defeat time bombs), simulate real user
interactions (to trigger a specific method) or set external
events (to defeat logic bombs) to observe malicious behavior.
TaintDroid was able to detect the data leak instantly, without
the need to trigger those conditions explicitly [28]. These
results have shown that HARVESTER can be and should be
used to improve the detection rate of static an dynamic analysis
systems.

Split-personality malware could be exposed by using anal-
ysis frameworks like the BareCloud [15]. Although the Bare-
Cloud is not available for Android yet, its analyzing approach
is substantially different from the other analysis frameworks.
Instead of simulating one system as close as possible to
the real device and trigger as many functions as possible,
the BareCloud is taking advantage of the fingerprinting and
obfuscating possibilities of the malware. By using hierar-
chical similarity-based behavioral profile comparison, it is
possible to detect differences in the execution on bare-metal
devices, virtualized, emulated and hypervisor-based analysis
environments. On Android the different analysis frameworks
can be used to detect changes in the applications behavior.
Balzarotti et al. [3] presented a first technique which uses the
BareCloud approach. They identified applications that detect
the presence of a sandbox (in their study the emulator-based
Anubis is used) and behave differently from the execution
on a reference system. Hence they are able to identify split-
personality malware. Future work has to evaluate whether
it is possible to build such a system to analyze Android
Applications fully automated or if it generates too many false
positives.

VIII. CONCLUSION

In this paper we have presented a broad overview about
the existing Android malware analysis frameworks and their
challenges.

First we gave an insight in the categorization of the different
analysis approaches. We compared static analyzes to dynamic
analyzes, referenced to existing analysis frameworks which
implement these approaches and discussed the pros and cons.

Second we described code obfuscation as a possibility to
hide malicious code from analysis. We gave an overview about
the different types of transformation attacks and discussed their
threat to Android security. Additionally we mentioned the use
of code injection to exploit benign applications.

Third we stated the problem that it is considerable harder
to defeat fingerprinting on smartphones than it is on PCs
because of the numerous sensors and hardware modules which
must be implemented. We described the possibilities to detect
an analysis environment based on different values. With the
BareCloud we proposed a possibility to use fingerprinting
of malicious applications against them because they would
behave differently on an emulation environment and on a
physical device.

Fourth we showed different communication channels which
are caused by application collusion and lead to privilege esca-
lation. Most of the communication channels are not checked



C–9

by the analysis environments. Often only one application at a
time is analyzed and therefore no information leakage to the
network will be seen.

Fifth we described two other challenges for analysis en-
vironments which can not easily be triggered. An analysis
environment is not able to trigger all external events by using
random intents. These triggers are called logic bombs. Time
bombs are actions which are performed after a certain time,
which is also difficult to achieve because of limited resources.
We mentioned the HARVESTER approach that allows to
trigger these actions automatically.

Sixth we gave an overview about possible improvements
of the current analysis frameworks. We stated that the HAR-
VESTER looks very promising because it defeats some obfus-
cation and fingerprinting techniques. In combination with an
analysis framework like the BareCloud it should be possible
to detect more malicious applications.

REFERENCES

[1] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo
Gascon, Konrad Rieck, and CERT Siemens. Drebin:
Effective and explainable detection of android malware in
your pocket. In Proceedings of the Annual Symposium on
Network and Distributed System Security (NDSS), 2014.

[2] Avast. Apps on google play pose as games
and infect millions of users with adware.
https://blog.avast.com/2015/02/03/apps-on-google-
play-pose-as-games-and-infect-millions-of-users-with-
adware/, 2015. Accessed: 2015-07-14.

[3] Davide Balzarotti, Marco Cova, Christoph Karlberger,
Engin Kirda, Christopher Kruegel, and Giovanni Vigna.
Efficient detection of split personalities in malware. In
NDSS, 2010.

[4] Michael Bierma, Eric Gustafson, Jeremy Erickson, David
Fritz, and Yung Ryn Choe. Andlantis: large-scale android
dynamic analysis. arXiv preprint arXiv:1410.7751, 2014.

[5] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko,
Thomas Fischer, and Ahmad-Reza Sadeghi. Xmandroid:
A new android evolution to mitigate privilege escalation
attacks. Technische Universität Darmstadt, Technical
Report TR-2011-04, 2011.

[6] Mihai Christodorescu, Somesh Jha, Sanjit Seshia, Dawn
Song, Randal E Bryant, et al. Semantics-aware malware
detection. In Security and Privacy, 2005 IEEE Sympo-
sium on, pages 32–46. IEEE, 2005.

[7] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke
Lee. Ether: malware analysis via hardware virtualization
extensions. In Proceedings of the 15th ACM conference
on Computer and communications security, pages 51–62.
ACM, 2008.

[8] William Enck, Peter Gilbert, Seungyeop Han, Vasant
Tendulkar, Byung-Gon Chun, Landon P Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N Sheth. Taintdroid:
an information-flow tracking system for realtime privacy
monitoring on smartphones. ACM Transactions on Com-
puter Systems (TOCS), 32(2):5, 2014.

[9] William Enck, Damien Octeau, Patrick McDaniel, and
Swarat Chaudhuri. A study of android application secu-

rity. In USENIX security symposium, volume 2, page 2,
2011.

[10] Rafael Fedler, Julian Schütte, and Marcel Kulicke. On
the effectiveness of malware protection on android, an
evaluation of android antivirus apps. Applied and Inte-
grated Security, 2013.

[11] Patrick Schulz Felix Matenaar. Detecting android sand-
boxes. http://www.dexlabs.org/blog/btdetect, 2012. Ac-
cessed: 2015-07-14.

[12] Peter Gilbert, Byung-Gon Chun, L Cox, and Jaeyeon
Jung. Automating privacy testing of smartphone appli-
cations. Technical report, Technical Report CS-2011-02,
Duke University, 2011.

[13] Johannes Hoffmann. From Mobile to Security. PhD
thesis, Ruhr-Universitt Bochum, 2014.

[14] Dan Kaplan. Google using custom
malware scanner for android apps.
http://www.itnews.com.au/News/289242,google-
employs-bouncer-to-cleanse-android-malware.aspx,
2012. Accessed: 2015-07-14.

[15] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel.
Barecloud: bare-metal analysis-based evasive malware
detection. In Proceedings of the 23rd USENIX Security
Symposium, 2014.

[16] Martina Lindorfer, Matthias Neugschwandtner, and
Christian Platzer. Marvin: Efficient and comprehensive
mobile app classification through static and dynamic
analysis. 2014.

[17] Martina Lindorfer, Matthias Neugschwandtner, Lukas
Weichselbaum, Yanick Fratantonio, Victor van der Veen,
and Christian Platzer. Andrubis-1,000,000 apps later:
A view on current android malware behaviors. In
Proceedings of the the 3rd International Workshop on
Building Analysis Datasets and Gathering Experience
Returns for Security (BADGERS), 2014.

[18] Martina Lindorfer, Stamatis Volanis, Alessandro Sisto,
Matthias Neugschwandtner, Elias Athanasopoulos, Fed-
erico Maggi, Christian Platzer, Stefano Zanero, and
Sotiris Ioannidis. Andradar: fast discovery of android
applications in alternative markets. In Detection of
Intrusions and Malware, and Vulnerability Assessment,
pages 51–71. Springer, 2014.

[19] Dominik Maier, Tilo Müller, and Mykola Protsenko.
Divide-and-conquer: Why android malware cannot be
stopped. In Proceedings of the 2014 Ninth Interna-
tional Conference on Availability, Reliability and Secu-
rity, ARES ’14, pages 30–39, Washington, DC, USA,
2014. IEEE Computer Society.

[20] Claudio Marforio, Hubert Ritzdorf, Aurélien Francillon,
and Srdjan Capkun. Analysis of the communication
between colluding applications on modern smartphones.
In Proceedings of the 28th Annual Computer Security
Applications Conference, pages 51–60. ACM, 2012.

[21] Wojciech Mazurczyk and Luca Caviglione. Steganogra-
phy in modern smartphones and mitigation techniques.
Communications Surveys & Tutorials, IEEE, 17(1):334–
357, 2014.

[22] Andreas Moser, Christopher Kruegel, and Engin Kirda.



C–10

Exploring multiple execution paths for malware analysis.
In Security and Privacy, 2007. SP’07. IEEE Symposium
on, pages 231–245. IEEE, 2007.

[23] Sebastian Neuner, Victor van der Veen, Martina Lindor-
fer, Markus Huber, Georg Merzdovnik, Martin Mulaz-
zani, and Edgar Weippl. Enter sandbox: Android sandbox
comparison. arXiv preprint arXiv:1410.7749, 2014.

[24] Jon Oberheide and Charlie Miller. Dissecting the android
bouncer. SummerCon2012, New York, 2012.

[25] Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos,
Michalis Polychronakis, and Sotiris Ioannidis. Rage
against the virtual machine: Hindering dynamic analysis
of android malware. In Proceedings of the Seventh
European Workshop on System Security, EuroSec ’14,
pages 5:1–5:6, New York, NY, USA, 2014. ACM.

[26] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi,
Christopher Kruegel, and Giovanni Vigna. Execute this!
analyzing unsafe and malicious dynamic code loading
in android applications. In Proceedings of the 20th An-
nual Network & Distributed System Security Symposium
(NDSS), 2014.

[27] John Regehr Raimondas Sasnauskas. Intent fuzzer:
Crafting intents of death. 2014.

[28] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger,
and Eric Bodden. Harvesting runtime data in android
applications for identifying malware and enhancing code
analysis. 2015.

[29] Siegfried Rasthofer, Irfan Asrar, Stephan Huber, and Eric
Bodden. An investigation of the android/badaccents
malware which exploits a new android tapjacking attack.
2015.

[30] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. Droid-
chameleon: evaluating android anti-malware against
transformation attacks. In Proceedings of the 8th ACM
SIGSAC symposium on Information, computer and com-
munications security, pages 329–334. ACM, 2013.

[31] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. Catch
me if you can: Evaluating android anti-malware against
transformation attacks. Information Forensics and Secu-
rity, IEEE Transactions on, 9(1):99–108, 2014.

[32] Xiaoyong Zhou Mehool Intwala Apu Kapadia Xi-
aoFeng Wang Roman Schlegel, Kehuan Zhang. Sound-
comber: A stealthy and context-aware sound trojan for
smartphones. In Proceedings of the Network and Dis-
tributed System Security Symposium, 2011.

[33] Snoopwall. Flashlight apps threat assess-
ment report. http://www.snoopwall.com/wp-
content/uploads/2014/10/Flashlight-Spyware-Appendix-
2014.pdf, 2012. Accessed: 2015-07-14.

[34] Michael Spreitzenbarth, Felix Freiling, Florian Echtler,
Thomas Schreck, and Johannes Hoffmann. Mobile-
sandbox: having a deeper look into android applications.
In Proceedings of the 28th Annual ACM Symposium on
Applied Computing, pages 1808–1815. ACM, 2013.

[35] Christian Fritz Eric Bodden Alexandre Bartel Jacques
Klein Yves Le Traon Damien Octeau Patrick McDaniel
Steven Arzt, Siegfried Rasthofer. Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware

taint analysis for android apps. PLDI 14, 2014.
[36] Vanja Svajcer. Sophos mobile security threat report. In

Mobile World Congress, 2014.
[37] Victor van der Veen. Dynamic analysis of android

malware. Master’s thesis, VU University Amsterdam,
2013.

[38] Amit Vasudevan and Ramesh Yerraballi. Cobra:
Fine-grained malware analysis using stealth localized-
executions. In Security and Privacy, 2006 IEEE Sym-
posium on, pages 15–pp. IEEE, 2006.

[39] Timothy Vidas and Nicolas Christin. Evading android
runtime analysis via sandbox detection. In Proceedings
of the 9th ACM symposium on Information, computer and
communications security, pages 447–458. ACM, 2014.

[40] Lok-Kwong Yan and Heng Yin. Droidscope: Seamlessly
reconstructing the os and dalvik semantic views for
dynamic android malware analysis. In USENIX security
symposium, pages 569–584, 2012.


