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Zusammenfassung

Der Schutz eines Computersystems vor bosartigen Programmen und der Abschottung
der Programme gegeneinander stellt seit jeher hohe Anforderungen an Entwickler, Soft-
warearchitekten und Forscher. Viele verschiedene Versuche wurden unternommen, mod-
erne Computersysteme sicher zu gestalten, doch hoch spezialisierte Angriffe durchdrin-
gen auch diese Schutzmechanismen. Mit der zunehmenden Verlagerung von Systemen
in fremde Rechenzentren gewinnt zusitzlich ein weiterer Angriffsvektor an Bedeutung,
denn nur wenige Schutzmechanismen gehen von einem bosartigen Host-Betriebssystem
aus.

Intel hat 2013 mit den Software Guard Extensions (Intel SGX) ein Modell vorgestellt,
welches die Informationssicherheit in dem Bereich revolutionieren konnte. An statt das
Betriebssystem gegen Anwendungen abzusichern, wird nun die Anwendung unter an-
derem gegen privilegierten Zugriff des Betriebssystems geschiitzt. Intel SGX erlaubt
es einen vertrauenswiirdigen Container zu erstellen, welcher weder vom Betriebssys-
tem noch von anderen Applikationen modifiziert und ausgelesen werden kann. Mit der
Veroffentlichung der SGX-fahigen Prozessoren im Oktober 2015 und der notwendigen
Entwickler-Tools im Januar 2016 ist es moglich erste Anwendungen fiir SGX zu entwick-
eln.

Die Forschung um die Intel Software Guard Extensions befindet sich in den Anfingen.
Aus diesem Grund ist eine kritische Auseinandersetzung mit dem Design und Implemen-
tation von Intel SGX notwendig. In dieser Arbeit wird Intel SGX analysiert, auf die
Grenzen hin getestet und auf die Nutzbarkeit gepriift. Erste Anwendungsfille werden
vorgestellt und kritisch bewertet.

Es wird erstmalig der Ansatz vorgestellt Betriebsystemkomponenten des Linux Kernels
mit Intel SGX abzusichern. Das System TresorSGX wird beschrieben, welches die Funk-
tionalitédt eines Kernel Modules in ein geschiitzten SGX Container auslagert und damit
dieses Modul gegen unberechtigten Zugriff absichert. TresorSGX bietet in einem Ker-
nel Modul eine Verschliisselungsmethode fiir die Linux Crypto API an, welche geschiitzt
in einem SGX Container ausgefiihrt wird. Mit diesem System ist der Schliissel des Al-
gorithmus zu keiner Zeit auslesbar. Es ist dadurch resistent gegen cold-boot und DMA
Angriffe.

Die daraus gewonnenen Erkenntnisse iiber das Auslagern von Kernel Komponenten in
SGX Container konnen als Basis fiir kiinftige Forschungsthemen in dem Umfeld dienen.
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Abstract

The defence of a computer system against malicious applications and the isolation of ap-
plications against each other has always been a challenge for developers, software archi-
tects and researchers. Different attempts were made to design secure systems. However,
highly sophisticated attacks manage to overcome those security measurements. With the
migration of computer systems into foreign datacenters another attack vector gains influ-
ence because only a few safety mechanisms take malicious host operating systems into
consideration.

In 2013 Intel proposed the Software Guard Extensions (SGX) as new model to secure
applications. Instead of securing the operating system against applications the applica-
tions are protected against privileged unauthorised access. Intel SGX provides a secured
trustworthy container which cannot be accessed, read or modified by any unauthorised
party. With the release of the SGX-capable processors in October 2015 and the required
developer tools in January 2016 it is possible to develop first SGX applications.

The research about the Intel Software Guard Extensions is in the very beginning. There-
fore, a critical examination of the design and implementation of SGX is required. In this
thesis SGX will be analysed, its limits tested and the usability examined. Available use
cases for SGX will be presented and critically evaluated.

A new attempt to isolate and secure operating system components of the Linux kernel will
be introduced. The system TresorSGX which outsources a functionality of a kernel mod-
ule to a SGX container will be described. TresorSGX provides a cryptographic algorithm
for the Linux Crypto API which is executed in a secured container. The cryptographic key
material is guarded from unauthorised access of unprivileged and privileged components
at any time. This protects the disk-encryption system from cold-boot and DMA attacks.

The gained insights about the migration of kernel components into SGX containers can
serve as foundation for future research in that field.
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INTRODUCTION

The protection of a computer system against malicious applications and the isolation of
software components has been a difficult task for software developers, software architects
and researchers since the beginning. Many attempts were made to secure modern systems
but the rising complexity and dependency of big applications allow highly sophisticated
attacks to succeed. With the current trend of outsourcing the physical layer or operating
system layer of a datacenter to foreign resources another attack vector is rising because
most security considerations assume that the physical layer can be trusted.

When discussing security related topics the broad term security has to be explained at
first. Its meaning depends heavily on the field where it is applied. In general, the security
guarantees that an asset is defended against a set of attacks. The asset can be the system
itself or information. The attacker is trying to interfere with the security properties of the
asset.

The basic security properties of an asset are Confidentiality, Integrity, Availability and
Authenticity. The confidentiality guarantees that the asset can not be obtained by an unau-
thorized entity. A standard measure to achieve confidentiality is to encrypt sensitive data.
The encryption keys itself become confidential assets too. The second security property is
the integrity of data. Data must be complete and not be modified by an unauthorized en-
tity. By using hashing and signature techniques alternations of data can be detected. The
availability of an asset guarantees that an user can access the information or the system
if he needs to. A classic attack against availability is the denial-of-service attack which
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leads to a complete unavailability of the system. By using redundancy and additional se-
curity measures the availability can be increased. The authenticity of an asset gains more
and more significance. It ensures that the asset can proove its identity and its properties
against a challenging user. If an attacker tries to impersonate the asset, the user will de-
tect it. In the world wide web authenticity is guaranteed by using public key cryptography
and digital certificates. The user trusts root certificate authorities and therefore trusts en-
tities which proof their identity by signing with issued certificates. These basic security
properties are applied to the trusted computing field too.

In 2013 Intel published the Intel Software Guard Extensions (Intel SGX) in a series of
papers Hoekstra et al. [20] McKeen et al. [44] Anati et al. [1]. They proposed a new pro-
gramming model which uses containers, so called enclaves, which can only be accessed
by the CPU and no other party of the system. Furthermore neither the operating system
nor a hypervisor can read the content of the enclave at runtime. In the light of the current
movement into the Cloud this programming model looks really promising to retain the
security, integrity and confidentiality of on-site datacenters.

The Intel Skylake processor, released in October 2015, allows the creation and execution
of SGX enclaves via its extended instruction set. Multiple researchers published first ideas
and proof of concepts of how applications can benefit from SGX Kim et al. [37]Baumann
et al. [3]Ohrimenko et al. [48].

1.1. Motivation

The most of the security systems and security analysis assume that the host system can be
trusted and that an attacker enters the system from the outside, for example the network or
the periphery of the computer. Even if a malicious application is executed at the system,
most of the research assume that at least the operating system can be trusted. Because
of malware that affects the hypervisor and recurring security vulnerabilities in operating
systems it becomes clear that this assumption can not be trusted any longer when our daily
live depends on numerous computing systems.

Furthermore mobile devices are available which allow the execution of security critical
applications like online banking. These platforms are becoming more and more open that
users are able to install custom applications and operating systems, downloaded from the
internet. These applications can be malicious to either trick the user to insert confidential
information or to exploit other applications on the device.

The security model of Intel SGX assumes that only the CPU can be trusted and other
applications and the host operating system per se can be malicious as shown in Figure 1.1.
Secured containers (trusted enclaves) can be loaded into a protected memory area which
can only be accessed by the CPU. No malicious application, operating system or virtual
machine monitor can access the information in the secured container. The memory of the
container is encrypted in the CPU to defend against observation via the hardware. These
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Figure 1.1.: The secured container defends against unauthorized access and allows access only
over pre-defined interfaces

containers (enclaves) can be attested and remotely verified that they are unmodified. This
allows the distribution and execution of trusted enclaves at scale.

The Intel software guard extensions have the potential to overcome known problems and
risks regarding critical applications at unknown hosts. Intel itself proposed use cases
for the new technology Hoekstra et al. [20]. They developed a software based one-time
password token generators and secured Enterprise Rights Management Clients. Other
researchers developed a model to remote attestate routing controllers of the Tor network
to guarantee their integrity. Other use cases and filed patents will be discussed in section
2.1.8.

A custom enclave can only be launched with a special Launch Enclave from Intel. This
fact was discovered during the examination of the SGX documentation in late 2015. At
that time the only possibility to gain experience with the SGX software model was to use
the OpenSGX emulator [15]. Since January 2016, the SGX SDK for Windows was made
available to the public, allowing practical research based on real hardware.

The main use case for SGX is to include small functions into the enclave to harden the
codebase against different attacks. In this thesis SGX is used to improve the security of
the Linux Kernel. With TRESOR Miiller et al. [46], Crypto API implementation of AES,
it is able to withstand cold boot attacks on memory. This approach will be continued with
the Software Guard Extensions. Instead of saving the cryptographic key material in CPU
registers, the key will be saved in an enclave. This use case is the basis of a first proof of
concept for the usage of Intel SGX in the Linux Kernel.
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1.2. Task

The task of this thesis is divided into three main parts. In the beginning there has not
been an official documentation apart from the SGX white papers and the Instruction Set
Reference. During the elaboration of the thesis more and more official documentation
were published.

1.2.1. Analysis of SGX

The first task was to analyse SGX from the 2013 white papers Hoekstra et al. [20] McKeen
et al. [44] Anati et al. [1] and the Instruction Set Reference Intel [25] which was published
in October 2015. Assumptions were made and key facts were left out in these documents.
Other researchers reviewed these documents and set them in the context with filed patents
Costan and Devadas [11]. In January 2016, the Intel SGX SDK was released and with it
additional documentation [27] [28]. These documents give proof about the assumptions
researchers made about the Intel Launch Enclave.!

The details about SGX are well described in these sources. The scope of this thesis is not
to describe SGX into detail but to describe how the theory about SGX is applied in reality.
The technology behind SGX will be described at a higher level to create understanding of
SGX, its mechanics, the tools and the software model.

The use cases for SGX will be discussed based on patents that were filed by corpora-
tions. With the help of these patents it is possible to give an overview about the usage
of SGX and its possible future field of application. Today it is unknown if an licensing
scheme exists. Furthermore requirements for optaining production SGX certificates will
be discussed.

1.2.2. SGX in Linux Kernel

In contrast to secure user mode applications against other user mode applications, this ap-
proach is using SGX to secure Linux kernel modules. Similar to a microkernel should be
the kernel components isolated from each other. The goal is that even with a vulnerability
in a kernel module, it is not possible to gain power over other modules by exploiting this
vulnerability. With SGX it is possible to build resistant components which can not be
exploited by privileged malicious applications.

However, in the official documentation of Intel SGX it is stated that the new instructions
can be differentiated in privileged and unprivileged instructions. During the analysis of
SGX it became clear that SGX is not built to enter enclaves from kernel mode. Instruc-
tions that are used to enter an enclave and execute enclave functions are not available in
ring-0 [25]. Therefore SGX is used in a detour to the user space.

"https://jbeekman.nl/blog/2015/10/intel-has-full-control-over-sgx/
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1.2.3. Tresor with SGX

The SGX enabled Tresor extends the Tresor by Miiller et al. [46]. It is meant to be a proof
of concept of isolation kernel functions. As previously described it was first planned to
implement TresorSGX fully in the kernel space. Because of the findings about SGX,
a three layered architecture is used to provide kernel module functionality by executing
SGX in user mode.

1.3. Related Work

Intel SGX is a new technology. The required tools for executing SGX enclaves on hard-
ware are just released in January 2016. Therefore, the published papers which discusses
SGX and proposes possible use cases are limited. Papers and patents regarding use cases
for enclave systems are discussed in section 2.1.8. A recommended paper which analyses
the available Intel SGX documentation and Intel SGX patents is published by Costan and
Devadas [11].

1.4. Results

This thesis is a first analysis of the possible usage of SGX in kernel space. During this
elaboration the available SGX capable hardware and software changed, which resulted in
changing requirements too.

Intel SGX has been compared to other technologies and its history has been outlined.
Furthermore, a hands on experience with the SGX SDK has been described. With the help
of examples its functionality and components have been described in detail. Furthermore,
the current situation of SGX capable hardware and the limitations of SGX have been
highlighted. Based on filed patents different use cases of SGX have been shown and
discussed. In addition, a final outlook of the future of Intel SGX has been made build on
these patents and the documentation.

Tresor SGX The TresorSGX architecture is a proof of concept of isolating kernel mod-
ules using Intel SGX enclaves. TresorSGX registers a cipher at the Crypto API to support
encryption tools like dm-crypt. The encryption key of the TresorSGX cipher is at no time
receivable by any privileged or unprivileged processes. The key is generated using sealing
techniques discussed later in this thesis. This makes the cipher sturdy against cold-boot
and DMA attacks. Furthermore, it is not possible to recover the key by modifying any
component of the untrusted TresorSGX architecture.
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The functionality of the original Tresor has been exceeded. The encryption key is not
retrievable at any point. However, the additional software layers are causing a limited
throughput.

1.5. Outline

Background At first the Intel Software Guard Extensions will be discussed in section
2.1. Afterwards a time line of the published SGX hardware, software and documents
is presented in section 2.1.2. These SGX components were made available during the
elaboration of this thesis. In section 2.1.3 an overview about other approaches on trusted
computing, their benefits and disadvantages in comparison with Intel SGX is given. The
security benefits of SGX are discussed in the section 2.1.4.

The techniques that are used by the Intel Software Guard extensions are described in
section 2.1.5. Also the steps, tools and generated files which are used to create an enclave
are discussed in that section. With the knowledge of the characteristics and technology, an
overview about the software development kits (SDK) is given in section 2.1.6. The next
section 2.1.7 describes the hard- and software requirements for SGX and the current state
of SGX availability. The Intel SGX section is finalised with the section 2.1.8 about use
cases and published patents regarding SGX and similiar technologies. In section 2.1.11
the possible future usage of SGX is discussed.

The section OpenSGX 2.2 describes the QEMU based Emulator for SGX like Enclaves.
An insight into the architecture, limitations and differences to Intel SGX is given. OpenSGX
has been used in the first half of the development phase of the SGX enabled Tresor but
has been abandoned with the access to the Intel SGX SDK. However, OpenSGX provides
nearly the same programming experience as Intel SGX without the need for SGX capa-
ble hardware. Furthermore it is possible to debug the complete emulated system, which
allows a deeper understanding of the architecture.

The third part of the background chapter analyses the Linux kernel 2.3. During the analy-
sis phase of Intel SGX different insights how SGX works and how it can be used became
apparent. That lead to a higher complexity in the implementation. The differencies of the
kernel- and usermode 2.3.1, the interaction and communication between these two modes
will be discussed. Also the interfaces and workflow of the Linux Kernel Crypto API12.3.3
will be analysed.

Design and Implementation Based on these findings about Intel SGX, OpenSGX
and the Linux Kernel the implementation of the SGX enabled Tresor is described in sec-
tion 3. After a motivation and short review on the original Tresor the benefits of using
the SGX are portrayed in section 3.1.2. The design section 3.2 describes the consider-
ations regarding enclave management, user to kernel communication and cryptography
components.
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The implementation of TresorSGX is described in section 3.3. After the architectural
overview the enclave lifecycle is shown. The different components of the TresorSGX
Linux Loadable Kernel Module are explained in 3.3.2. The possibilities to analyse and test
the encryption of TresorSGX by using the Linux Crypto API testmanager are described
in section 3.3.2 and by using the custom kernel module in section 3.3.2.

The user space component which communicates with the kernel module is the TresorSGX
daemon and is discussed in section 3.3.3. The daemon communicates with the enclave
which is explained in section 3.3.4. The usage of TresorSGX is explained in section
3.3.5. Information about the mandatory components of TresorSGX and about the setup
of an encrypted partition are given there.

Evaluation The chapter 4 analyses how the initial motivation and expectations for the
SGX enabled Tresor implementation matches the results. At first the usability of Tre-
sorSGX is analysed in section 4.1. This is followed by section 4.2 which discusses the
correctness of the encryption and compatibility with other cryptography ciphers. In sec-
tion 4.3 the performance of TresorSGX iscompared to plain usage and the standard aes
encryption. The chapter ends with section 4.4 about the security properties of TresorSGX.

Conclusion and Future Work The limitations of the Software Guard Extensions
are discussed in section 5.1. The observed limitations and acknowledgement during the
design and implementation of TresorSGX are discussed in section 5.2. The findings about
the usage of SGX to isolate OS components are finalised in section 5.3. An outlook to
future work is given in section 5.4.






BACKGROUND

The Intel SGX capable Hardware and the Intel SGX SDK were made available just re-
cently. A top down approach is used to describe Intel SGX in the following. This way a
comprehension of the development model is created without the need to read through the
complete Intel SGX Instruction Set Reference manual [25]. For deeper understanding of
the mechanics important references will be given at any point. Also the paper by Costan
and Devadas [11] is recommended for a more detailed description of the Intel Software
Guard Extensions.

Because of the missing hard- and software (described in detail in section 2.1.7) during
the first part of the research, the emulator OpenSGX was used and will be discussed in
section 2.2. However, OpenSGX is only able to emulate user space applications, therefore
only the user space part of TresorSGX can be executed in OpenSGX.

As previously outlined some aspects of the Linux kernel are also described in section
2.3. This section will help to gain some insight into Linux kernel development and the
Linux kernel Crypto API. The possibilities of user to kernel space communication are
also discussed and lead to the implementation of the Netlink interface.



2.1. INTEL SGX

2.1. Intel SGX

The Intel Software Guard Extensions is a technology which provides high level protection
of data and was first published in 2013 as Innovative Instructions and Software Model for
Isolated Execution [44], Using Innovative Instructions to Create Trustworthy Software
Solutions [20] and Innovative Technology for CPU Based Attestation and Sealing [1].

With Intel SGX it is possible to create containers in protected memory as shown in Fig-
ure 1.1. This container is called an enclave. It is not possible to read or write in that
protected memory from the outside of the enclave. The enclave provides integrity and
availability of its data even if it is executed on a malicious host. The code of an enclave
can be executed by special instructions which are available on Intel’s newest generation
of Skylake CPU’s that were released in September 2015. The first batch of Skylake CPUs
was not able to execute SGX. Only post-conversion CPUs that were made available on
October 26, 2015 support SGX [29]. The special instructions are described in section
2.1.5.

In the following sections the motivation and other approaches which were created to se-
cure the execution and the data of an application are discussed. Furthermore, the tech-
nology, architecture and software which is used by Intel SGX, is described. To put the
theoretical background in relation with the reality, SGX is analysed regarding its usage.
Based on filed patents and available research papers the future usage of SGX is estimated
in section 2.1.8.

2.1.1. Motivation

The higher goal of the Intel Software Guard Extensions is to improve the overall infor-
mation security on a computing device. This is achieved by securing and schielding the
application and its memory against unauthorised access or by guaranteeing the authentic-
ity and integrity of an enclave. The Software Guard Extensions help securing sensitive
user passwords, confidential enterprise data and protecting intellectual property. Special
use cases and an overview about the future use of Intel SGX based on filed patents can be
found in section 2.1.8.

Furthermore, it is possible to use SGX in the cloud computing environment. Users must
trust an unknown entity with their data and their applications. The user has no information
how the platform provider handels the data, if the platform is secured against any insider
or ousider attack or if the platform provider itself has an interest in optaining or modfying
the users data.

The strategy is to distribute encrypted containers, which contain both the application and
the data, to cloud computing vendors. The container is especially encrypted for that single
server CPU in the foreign datacenter. A provisioning enclave can decrypt the data and
initialise the enclave. Only the CPU is able to execute the enclave application and to
decrypt its memory.

10
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During the loading of an enclave its content is hashed by the CPU. This measurement
hash can be used for remote-attestation (which is described in section2.1.5) against a
challenger. Remote attestation can be used to verify the other communication party if it
is the unmodified application one expect and if it is running in a SGX environment.

2.1.2. History

The Intel Software Guard Extensions published their whitepapers during the The Sec-
ond Workshop on Hardware and Architectural Support for Security and Privacy’ (HASP
2013) in Tel-Aviv in June 2013. The HASP is intented to be a workshop for security
research on application level, hardware and architecture aspects in the era of cloud com-
puting.

They at first presented their paper Innovative Instructions and Software Model for Isolated
Execution [44]?. Followed by the paper Innovative Technology for CPU Based Attestation
and Sealing [1]>. Based on this foundation the paper Using Innovative Instructions to
Create Trustworthy Software Solutions [20]* was published.

In September 2013 Intel published the first part of an explainatory series SGX for Dum-
mies® describing eight SGX Design Objectives which will be discussed in section 2.1.4.
Part two and three were released in the beginning of the year 2014.

In 2014 Baumann et al. [3] proposed Haven which allows the shielded execution of legacy
applications on commodity operating systems and hardware. Haven describes a first use-
case by Microsoft for the usage of SGX. Another secured architecture proposal was pub-
lished by Li et al. [39] called MiniBox. Google is using MiniBox cross-platform concept
for a Platform-as-a-Service cloud computing scenario.

The Intel Software Guard Extensions Programming Reference [25] was published in Oc-
tober 2014. Based on the description of the new instructions and memory operations it
was possible to get a deeper understanding of SGX and how Intel wants to achieve their
security goals.

In May 2015 Intel informed that SGX protects against memory attacks but not against
sidechannels®. They are referencing a paper by Xu et al. [63] which allows the extraction
of documents and images over controlled-channel attacks. Although the data itself and
the memory is not accessable, these sidechannels allow a data reconstruction by observing
access and timing patterns. The host application which uses the trusted enclave functions
and the internal enclave functions must be hardened against these scenarios.

Thttps://sites.google.com/site/haspworkshop2013/

Presentation: https://docs.google.com/file/d/0B_wHUJwViKDaRmO00QIVITkY xckE/edit?usp=sharing
3Presentation: https://docs.google.com/file/d/0B_wHUJwViKDaaUhEUjVDcVBYUlk/edit?usp=sharing
“Presentation: https://docs.google.com/file/d/0B_wHUJwViKDaMm9PU3hOTUhLbHM/edit?usp=sharing
Shttps://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
®https://software.intel.com/en-us/blogs/2015/05/19/1ook-both-ways-and-watch-out-for-side-channels
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At the ISCA 2015 Intel presented a set of tutorial slides [26]” giving an in-depth architec-
ture, SGX key hierarchy, attestation and provisioning description. They also demonstrated
a side channel evaluation tool and gave an overview about the Linux SGX SDK.

The SGX capable CPU generation Skylake was released in August 20158, However, SGX
was not available at the first batch of Skylake CPU’s. This information was published in a
product change notification [29] on October 1st 2016, two month after the initial release.
The customer should expect post-conversion material between October 26th and Novem-
ber 30th. The SGX capable CPU’s do not differentiate from the non-capable CPU’s. SGX
can only be tested during runtime. However, testing SGX during runtime was not possible
in 2015 because no SGX BIOS update was available for the desktop mainboards.

In October 2015 a researcher discovered that the Launch enclave is a mandatory compo-
nent in the SGX lifecycle’. Only an Intel signed enclave can be startet without a Launch-
Key / EINITTOKEN. Without this enclave no custom enclave can be initialised. That
feature was not highlighted by Intel in the documentation and never mentioned in the
SGX whitepapers. However, it is described in the issued patents by Intel. The Launch
enclave guarantees that the enclave author is in a business relationship with Intel.

The Windows SGX SDK' containing Kernel Drivers, SGX Services and Architectural
Enclaves, was published in January 2016. With the help of these tools it is possible to
create and launch enclaves on supported machines.

The available SDK’s permit an enclave creator to deploy debugging enclaves. For pro-
duction licences a developer must undergo an evaluation process by Intel described in an
article from February 2016'!. To be granted a production license the developed applica-
tion must follow defined coding practices. Found vulnerabilities must be fixed in a certain
period of time. Additionally, the developers must demonstrate the ability to save the en-
clave signing key securely following industry best practices. These requirements will be
discussed in section 2.1.7.

2.1.3. Related Approaches to Trusted Computing

Trusted Computing is a initiative by the Trusted Computing Group (TCG)'? to enhance
PC security. The TCG is a not-for-profit organisation which initially was a consortium of
AMD, HP, IBM, Intel and Microsoft. Its goal is to define global industry specifications
and standards which increase the security of devices.

Trusted Computing guarantees that the system behaves in predefined deterministic ways.
This behavior is enforced by hardware and software. Furthermore, Trusted Computing

Thttps://software.intel.com/sites/default/files/332680-001.pdf

8https://newsroom.intel.com/chip-shots/chip-shot-intel-unleashes-next-gen-enthusiast-desktop-pc-
platform-at-gamescom/

“https://jbeekman.nl/blog/2015/10/intel-has-full-control-over-sgx/

1Ohttps://software.intel.com/en-us/sgx-sdk

https://software.intel.com/en-us/articles/intel-sgx-product-licensing

https://www.trustedcomputinggroup.org/
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protects critical data and defends against attacks on the system. It makes secure authenti-
cation possible and protects the cryptographic key material and certificates. Also it allows
the attestation of the device itself and guarantees its identity. This allows to protect the
user against some security risks, but it also hands over control to a third party.

The Electronic Frontier Foundation warns about the possible abuse of the features that
come along with Trusted Computing Systems [53]. They state that Trusted Computing not
only can be used to defend against malicious applications but it can also be used to defend
against the system owner and can enforce policies against its will. A few examples for the
negative use of Trusted Computing are application lock-in, forced upgrade, -downgrade
and the forced installation of application specific spyware.

In the following some Trusted Computing approaches and individual objectives by differ-
ent vendors will be discussed. This section provides background information about the
past of Trusted Computing and why SGX has been developed the way it is. A complete
breakdown of the different systems and a in-depth analysis can be found in [11] and will
be referenced.

Trusted Platform Module

The goal of the Trusted Computing Group was to develop a specification for a stan-
dardised module which enables trusted computing features. As a result the specification
ISO/IEC 11889 was created.

Since then the TCG published updates to the original TPM specification. October 2014
the latest TPM release 2.0 was published.

The Trusted Platform Module must be able to perform asymmetric key generation, asy-
metric encryption / decryption, hashing and random number generation. Furthermore, it
must be able to perform three different tasks [60].

e Remote Attestation - allows to create a hash which depends on the hard- and soft-
ware configuration of the system. This hash stands as a state of the system and
verifies against a third party that the state has not changed.

¢ Binding - allows the encryption of data with the public key of the TPM. The data
can only be decrypted by using the secret key inside the TPM. Therefore, the data is
bound to the TPM. A practical use case for binding is the provisioning of certificates
and encryption keys.

e Sealing - allows to use binding on specific data but attaches the state of the TPM to
it. Unsealing (decrypting) the data is only possible if the TPM is in the same state
as during the sealing operation.

Today TPM is widely deployed as dedicated chip / module because it does not rely on
CPU modifications. Therefore, the security guarantees are weaker compared to SGX.
One disadvantage is that the measurement for the remote attestation includes the whole
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OS kernel and drivers (which are therefore the Software Trusted Computing Base in the
TPC model). With fast changing update cycles it is not possible to keep a list of all
possible software configurations. Hence the remote attestation feature of TPM is not
widely used.

TPM is used in Microsoft BitLocker drive encryption. The keys are saved in the TPM
and only released after the TPM verifies the state of the computer. However, TPM is
vulnerable to cold-boot attacks because it releases the keys to the RAM. The encryption
and decryption are not executed in the TPM chip itself [19].

Intel Trusted Execution Technology

The Intel Trusted Execution Technology (TXT) is an hardware-based technology for en-
hancing server platform security [16]. Especially in highly visualised environments phys-
ical isolation of components is not longer possible. Intel TXT is designed to protect
against threads by systems that are not in the user’s control like the BIOS, hypervisor or
firmware.

The Software TCB is smaller compared to the TPM model. It consists of a Virtual Ma-
chine (VM) which is hosted using CPU virtualization features. The VM is securely ini-
tialized using an authenticated code module and is protected against unauthorized direct
memory access (DMA) using a protected range of memory. However TXT does not im-
plement encryption of its DRAM so it is prone to physical attacks on the memory.

Furthermore the software running in System Management Mode (SMM) is not reset dur-
ing the context switch to the enclave. Multiple times the SMM was compromised which
leads to the possibility of accessing the TXT containers memory [13] [62].

ARM TrustZone

The ARM TrustZone approach to Trusted Computing is based on the concept of a trusted
platform which enables infrastructure security by system design [2]. The TrustZone can
execute two different systems which are called the non-secure and the secure world. This
logical separation is enforced by hardware which is build into system on chip.

When compared to TPM, TrustZone is much more universal usable. By setting the non-
secure bit, restrictive policies can be used to manage the access to peripherals. Instead of
defining a fixed set of secure functions and protecting a single asset, it is possible to freely
implement different security functions in the secure world if needed.

It is possible to implement secure boot sequences in TrustZone. When starting the sys-
tem, a secure world ROM-based bootloader will initialize a flash device bootloader. The
flash-based bootloader will boot the Secure World OS. It is also possible to execute two
operating systems beside each other. That is achieved by starting a normal non-secure
bootloader after the secure bootloader to boot the normal operating system.
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The context switching between non-secure and secure world is managed by a monitor
module. The functionality is similar to a traditional OS context switch, but with additional
checks and policies when entering from non-secure mode. The monitor is located in the
secure world, shielded from possible attacks of the normal world.

|Banking Application | | NFCdriver |

| Display driver |~ | Store service |

|Media Application |

[ Cryptodriver ] —[ DRM service |

Payment service |

o

| Keypad driver |<

-l Service API |

B

|_TrustZone API | | Driver API |‘

v

|TrustZone API (jiriver| | Secur(? Kernel l

_f;:;;:ll-m‘lll'::;:;‘_‘i_. [Secure Boot |

Figure 2.1.: The software architecture for the proposed DRM and Banking Use-Cases.

ARM proposes Gadget2008 as a possible product design for TrustZone. This design im-
plements secure mechanics for the enforcement of policies for Digital-Rights-Management
(DRM) and banking applications. Figure 2.1 shows the applied TrustZone architecture for
the Gadget2008.

A DRM service can be placed in the secure world and is therefore secured from manipu-
lation. The media player is placed in the normal world and can be attested by the secure
world. Additional DRM data can be also saved in the secure world. When using the media
player the DRM service can validate the integrity of the player by attestation. Afterwards
the user’s licence can be checked at a remote digital content provider service. If the user
has the rights to play the media files they can be streamed or decrypted from the local
storage.

To secure banking applications a trusted payment service which can access a trusted key-
pad and display can be implemented in the TrustZone platform. With this technology an
application can display transaction details which can be signed by the user via the input of
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a PIN. Additional security can be achieved by using Near-Field-Communication (NFC)
to read data from a physically available bank card. To allow the usage of the NFC or
keypad by the normal world low level drivers must be implemented in this unsecured en-
vironment. The communication to the secure world can be protected with cryptographic
methods when using normal-world device drivers.

Aegis Secure Processor

Previously described approaches enable authentication of the user and the software. How-
ever, they only protect against software based attacks against trusted components and not
against physical attacks like tapping or probing chips and busses. The single-chip proces-
sor AEGIS by Suh et al. [57] uses additional mechanisms to defend applications against
software and hardware based attacks.

The TCB in the AEGIS approach is smaller compared to TXT or TPM. Only the chip
itself is trusted, all external modules and peripheries are not assumed to be insecure /
malicious. AEGIS implements four different modes which differentiate in the allowed
memory access schemes and tamper resistance.

Users can authenticate the CPU via a challenge-response mechanism. The private CPU
key is created in-CPU using Physical Random Functions (PRF). Additionally the CPU
can sign a hash of trusted operating system components to authenticate them.

Memory protection is enforced by access checks in the MMU and during a secure exe-
cution mode using integrity verification and encryption. AEGIS divides the memory into
regions with different security guarantees and read / write modes. AEGIS leaves the con-
trol of the paging completely to the OS which can exploit the side-channel to learn about
access patterns and timing schemes.

Bastion Architecture

Another approach which defends against physical and software attacks is the Bastion Ar-
chitecture [8]. Based on a CPU and a hypervisor a secure scalable execution and storage
platform is achieved. The Bastion architecture allows the execution of secure trusted
containers inside an untrusted operating system and software stack.

First Bastion starts its secure hypervisor by using new functions in the processor. Dur-
ing the so called Secure Launch protected memory is allocated for the hypervisor and
the integrity of the hypervisor is checked. The hash of the hypervisor is also used for
measurement and attestation purposes.

The secure hypervisor can create virtual machines to boot an operating systems. Security-
critical operating systems or modules can be started by using the Secure Launch processor
feature which requests a protected execution environment from the hypervisor. An overall
view on the Bastion Architecture can be seen in Figure 2.2. The integrity of the protected
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memory is guaranteed by cryptographic hash trees. Encryption is used to protect the
confidentiality of the pages of each launched secured module. The encryption key for the
memory protection is generated on each boot cycle. The saved data on the persistent disk
is encrypted using symmetric cryptography. The key must be provided by the module that

requests the secure storage.

secure Storage

A hypercall
secure Launch pp A AppB |~
hypercall .. 0OS1 0S 2 '
......................... Hypervisor
Hardware

. Bastion Processor |

RAM Disk
Hypervisor Hypervisor
0S1 0S1
0S 2 0S 2
App A ] App A
App B App B

Figure 2.2.: The Bastion Architecture with trusted and untrusted components. Trusted compo-
nents in grey. Secured memory can be requested by special bastion hypercalls.

With Bastion the software TCB only consists of the small hypervisor and not the complete
OS (TPM) or the secured OS (TrustZone). Bastion allows the isolation of the secured
modules against each other. However, Bastion is also vulnerable against side channel
attacks based on memory access schemes.

Compared to Intel SGX

Different approaches have been developed in the past to achieve the goals of trusted com-
puting which were specified by the Trusted Computing Group.

TPM as standardised and used platform is not able to achieve acceptance because the
Trusted Computing Base contains all system software and does not support isolation. The
system is either completely trusted or untrusted. In a world of numerous user application,
drivers and OS updates that approach is not applicable.

Intel TXT enhances the security of visualisation techniques by using the TPM attestation
feature to initialize virtual machines. Like TPM TXT does not protect against physical
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attacks on memory or bus.

The Arm TrustZone reduces the hardware TCB to the System-On-Chip. Therefore it is
not prone to physical attacks on the peripheries. The main disadvantage of the Trust-
Zone compared to SGX is that TrustZone only differentiates between the secure and non-
secure world. The software TCB consists of the complete secure world, including drivers,
firmware, secured applications. It is not possible to isolate and defend against threats from
components in the secure world. Therefore all secure world components must be trusted.

Aegis is comparable to SGX regarding its independence to trusted system software. Aegis
just uses a security kernel module whereas Intel depends on Intel-signed containers( more
information about Intel Enclaves in section 2.1.5). Also contains the AEGIS processor a
private key which is generated in the CPU. Furthermore, the Intel Skylake CPU includes
a private key which is used for attestation and sealing mechanisms.

Bastion and Aegis provide features to allow the attestation of the secure software TCB.
Intel SGX is using a hard coded key in the CPU to provide comparable attestation and
measurement.

Like Bastion and Aegis, SGX is also encrypting the memory of secured modules. Intel
SGX is using the Memory Encryption Engine (MEE) described in the paper by [17] and
in the ISCA slides [26]. The MEE guarantees the confidentiality, integrity and freshness
of the DRAM memory. The MEE is located in the CPU.

Intel SGX also shares the vulnerability to side-channel attacks on memory like Aegis
or Bastion [63]. Intel is aware of this and informs'® the SGX developer about possible
side channels. Furthermore, they state that the developer makes sure not to leak any
information via side-channels [28].

2.1.4. SGX Security Characteristics

As motivation for the following technology section the security properties of SGX will be
discussed at first.

Intel also proposed methods to use SGX to deploy trustworthy software solutions [20].
This is achieved by using attestation, provisioning and sealing techniques [1]. With SGX
it is possible to create an application which uses an encrypted enclave. This enclave can
be measured and its integrity can be attested against a challenging service provider. Via
sealing it is possible to encrypt data which can only be accessed by one enclave or all
enclaves of the enclave signer.

Intel defines multiple security properties which are achieved by the Software Guard Ex-
tensions. [44] [27]

e The enclave memory is secured against observation and modification of any non-
enclave party. That excludes virtual machine monitors, ring-0 applications or other

Bhttps://software.intel.com/en-us/blogs/2015/05/19/look-both-ways-and-watch-out-for-side-channels
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Figure 2.3.: The virtual address space layout of the enclave container in the host application.

enclaves. This is achieved by encrypting the memory with a in-CPU Memory En-
cryption Engine (MME) [17]. The encryption key changes every boot cycle.

e Via a hard-coded private key the CPU is able to perform an attestation of itself
against a challenger and to sign via public-key cryptography a measurement of an
enclave. That can be used to guarantee the integrity of an enclave and for enclave
attestation.

e Function calls into the enclave are provided via special instruction which perform
checks on the callee and the function arguments. The same applies for function
calls from the enclave to the outside. Interrupts and unplanned exits will not reveal
secure information because an enclave can only be stopped in a secured area.

e SGX allows the usage of multiple enclave instances which are isolated against each
other and from the system software.

e Intel SGX does not protect against reverse engineering and side channel attacks. It
is the duty of the enclave developer to withstand these attack vectors.

e The enclave is only debug-able with an special debugger if it is compiled with
debugging enabled.

2.1.5. Technology

This section gives an overview about the Intel Software Guard Extensions. Most of the
theoretical information can be found in the official documentation [27][28][30] and in
papers of independent researchers [11].
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Figure 2.4.: The virtual address space layout of a non-enclave view and as seen from the enclave.
Only the enclave can access its protected memory. It is also possible to call untrusted
outside libraries from the enclave.

As shown in Figure 2.4 the enclave is seen as a protected container in the address space of
the application. SGX guarantees the previously defined security properties to this enclave
container.

In the following the architecture of SGX and how the parts interact with each other to
achieve the security characteristics will be described. Furthermore, an enclave lifecycle
and the building work flow characterised. This section gives an example that helps to
understand the measures and actions taken in the SGX implementation of Tresor.

Architecture

The Intel Software Guard Extensions consist of multiple parts. The basis builds the Intel
Skylake CPU with its extended instruction set and memory access mechanisms. These
instructions are used to create, launch, enter and exit an enclave, as described in 2.1.5.
The protected memory, the Enclave Page Cache (EPC), for the enclave is allocated in the
Processor Reserved Memory (PRM) and secured with a Memory Encryption Engine as
described in section 2.1.5.

The SGX architecture is shown in Figure 2.5.

The host application is called the untrusted part. The untrusted application can call trusted
functions inside the enclave. Neither the input to the enclave, nor the output of the enclave
can be fully trusted because a malicious OS can modify these channels. The enclave
author has to take this into consideration developing security critical applications.

To initiate the enclave a launch token is needed which can be retrieved with the help
of the Intel Launch Enclave. The access to the Launch Enclave and other architectural
enclaves (Quoting, Provisioning, etc) is provided by the AESM service in user space.
SGX libraries provide the necessary methods to communicate with the AESM Service.

Enclaves can only be entered in user space. However, creating and initiating an enclave
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Figure 2.5.: High level hardware and software architecture of SGX.

is only possible in kernel space. Therefore, a privileged SGX module or driver must be
installed in kernel space to manage the enclave page cache and calling the specific SGX
instructions. The detailed lifecycle of an enclave is described in Section 2.1.5.

The launched enclave can only be entered from an unprivileged user-mode application via
special SGX instructions. When the enclave is running, any application which mapped
the enclaves page cache into its virtual address space can call enclave functions. When
entering the enclave the CPU is switched into enclave mode which still runs at user-mode
with ring-3 privileges.

Memory Usage

The essential security feature of SGX is that the enclaves data and code is stored, protected
and isolated in the Processor Reserved Memory(PRM). The PRM is a range in the DRAM
which is protected by the Memory Encryption Engine (MME)[17]. This engine rejects
Direct Memory Access (DMA) on the PRM. The datastructure in the PRM consists of the
Enclave Page Cache Map (EPCM) and the Enclave Page Cache (EPC) itself. The EPC
is split into 4 kilo byte pages which are managed in the EPCM and can be assigned to
different enclaves. The layout of the physical address space can be seen in Figure 2.6.

The SGX Enclave Control Structure (SECS) is required for each enclave and is saved in
the EPC. The SECS represents exactly one enclave and contains enclave information e.g.
Enclave ID, Enclave HASH, Enclave Size.

In the EPCM access control and security information for these pages are saved. With these
information it is evaluated whether to allow the access to the page or not. The EPCM is
managed by the CPU and not accessible by system software. Each EPCM entry contains
the following information: the validity of the EPC page, the enclave instance that owns
the page (links the the enclave SECS page) and the type of the page (regular Data, Thread
Control Structure, Version Array, SECS).

When accessing memory numerous checks are executed. A control flow for in-enclave
memory access can be seen in Figure 2.7. External access to PRM is blocked with a
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Figure 2.6.: Memory mechanisms during ECREATE and EADD.

reference to non existing memory. The following conditions have to be met to allow the
memory access. The logical processor must be in enclave mode. The page must belong
to current executed enclave. Accessed pages need to have a correct virtual address. If the
address is not in the enclaves virtual address space and not inside the PRM the access is
allowed.

If the CPU is in enclave mode, the address of the page is not in that enclaves memory
range but the address is in the EPC, the access is treated like non-enclave to EPC access.
In that case nonexisting memory will be referenced. If the CPU is in enclave mode, the
address is in the enclave range but the adress is not in the EPC or EPCM checks fail, a
page fault will be signaled.

The system software, e.g. the OS or an hypervisor, manages the EPC like normal memory.
The os is able to swap out unused pages from the PRM with SGX instructions. The
pages on non-PRM DRAM can be swapped with standard mechanisms. Furthermore, the
SGX programming model expects the system software to include enclave management
functionality which allows the usage of user-mode SGX applications without the need for
privileged drivers.

The confidentiality, integrity and freshness of the DRAM data is guaranteed by the Mem-
ory Encryption Engine (MME)[17]. A normal CPU reads and writes data from its internal
cache. If the CPU needs data that is not loaded in the cache, the Memory Controller loads
the data from DRAM. The MME extends the Memory Controller and steps in its place
when data from a protected region (in SGX the PRM) is accessed. The MME encrypts
data before writing, and decrypts data after reading. Additionally, it verifies the data with
the help of an integrity tree. The keys used for encryption and authentication are generated
at boot time.
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Figure 2.7.: SGX memory access control scheme.

Enclave Lifecycle

The new SGX instructions can be separated in supervisor and user mode instructions. A
detailed specification of the instructions and the required parameters can be found in the
SGX Programming Reference [25]. For further clarification the paper by [11] is recom-
mended.

In the following, an overview of the CPU leaf functions is given. These instructions will
be discussed in the next sections. An excerpt of instructions is shown in Table 2.1. To
execute the instructions explicit data is needed to perform the security checks and memory
allocations.

To create and initialize the enclave, the host application hands over the enclave content to
a privileged service running in supervisor / ring-0 mode. The Intel SGX SDK provides a
SGX kernel module / driver for that purpose. Furthermore, a Launch Enclave is required,
because EGETKEY is only callable from an enclave with launch capabilities [25]. In the
following a lifecycle of an enclave is described and illustrated in Figure 2.8. The dashed
Launch Enclave function calls are simplified for better clarity.
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Mode Instruction | Description Explicit Data Structures ‘

Supervisor | ECREATE | Create an enclave PAGEINFO, EPCPAGE

Supervisor | EADD Adds a page to the EPC PAGEINFO, EPCPAGE

Supervisor | EEXTEND | EPC page measurement EPCPAGE

Supervisor | EINIT Initialize an enclave SIGSTRUCT, SECS,
EINITTOKEN

Supervisor | EREMOVE | Removes a page from EPC | EPCPAGE

User mode | EENTER Enter an enclave TCS, SSA

User mode | EEXIT Exit an enclave

User mode | ERESUME | Re-enter an enclave TCS, SSA

User mode | EGETKEY | Create cryptographic key KEYREQUEST, KEY

User mode | EREPORT | Create cryptographic report | TARGETINFO, REPORT-
DATA

Table 2.1.: Subset of SGX Enclave Instructions

Creating the enclave An enclave resides in the execution context of a normal host
application. These host application must use a privileged party to create the enclave.
ECREATE is the first enclave build instruction by that privileged party. It creates a SGX
Enclave Control Structure (SECS) in the EPC and marks this page it as valid. The SECS-
SINIT Attribute is set to false because the enclave is not initialised yet. Therefore the
enclave can not be executed until the enclave is initialised.

The explicit attribute PAGEINFO of the ECREATE instruction contains information about
the enclave (e.g. base address, range). The PAGEINFO will be moved to the page refer-
enced by the SGX Enclave Control Structure (SECS).

Adding enclave pages In a second step EADD is used to add more EPC pages to
the enclave. EADD can initialize Thread Control Structure (TCS) pages or regular code
/ data pages. The EPCM is updated with the new page entry and a cryptographic log is
saved into SECS. Afterwards EEXTEND is executed which measures the added page and
adds the result to the cryptographic log in SECS. EEXTEND is also used in software-
attestation scenarios.

Initialising the enclave The third step is to call EINIT with SIGSTRUCT, SECS
and an EINITTOKEN. EINIT finalizes the initialization process and finishes the crypto-
graphic log in SECS. Therefore, no page can be added past EINIT. A hash of the cryp-
tographic log is generated and compared to the hash provided in the SIGSTRUCT. That
allows the attestation of the enclave.

The EINITTOKEN is generated by EGETKEY which can only be called from a Launch
Enclave. The policy is to allow the execution of the measured enclave (defined via
SIGSTRUCT) only on that CPU where the EINITTOKEN was generated. That means
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it is not possible to execute an enclave without the prior execution of the Launch Enclave.
The Intel Launch Enclave is included in the SGX SDK described in Section 2.1.6.

EINIT is successful if SIGSTRUCT is correctly signed with the public key which is in-
cluded in SIGSTRUCT, the measurement of the enclave matches the measurement in
SIGSTRUCT and the enclaves attributes matches the defined in SIGSTRUCT. Then the
sealing identity and enclave identity is saved in the SECS. Finally the SECS->INIT At-
tribute is set to true and the enclave can be entered.

user mode supervisor enclaves
Host App. SGX Module CPU enclA Launch Encl
create(enclA) | ECREATE(..) | allocate Mem
EADD(..) | copy Data

getlnitToken(enclA)
EGETKEY(enclA, EINITTOKEN)
ret EINITTOKEN

ret EINITTOKEN

init(enclA, EINITI'OKEN)JEINIT(..,EINI'I'I'OK.)‘ initialize
" >
EENTER(..) R enter enclA R

enter Host App. EEXIT

Figure 2.8.: The lifecycle of an enclave. Dashed calls are simplified for better clarity.

Entering the enclave The enclave is initialised and can be entered by a user mode
application. EENTER uses a pointer from the Thread Control Structure (TCS) to an
address inside the enclave to transfer control. The CPU switches into enclave mode,
saves RSP, RBP for later restore and modifies architectural features registers with enclave
values. When entering the enclave the TCS is marked as busy, preventing any other logical
CPU to enter the enclave simultaneously.

During the enclave mode an exception, interrupt or VM exit may occur. Instead of trans-
ferring the control directly, the enclave state is saved and a synthetic processor state is
loaded to prevent data leakage. Then a Asynchronous Enclave Exit (AEX) is called, the
Asynchronous Exit Pointer (AEP) is pushed to IRET and the processor leaves the enclave
mode.

When calling ERESUME the AEP will be retrieved from IRET, the enclave registers
will be restored and the CPU switches to enclave mode. An exception handler should
be implemented in the enclave to prevent ERESUME - AEX loops which are caused by
exceptions triggered by the enclave. The host application could call ERESUME with a
different AEP to resolve the exception.
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Secure data in the CPU registers must be erased during enclave mode because EEXIT
does not modify the most of the registers. Furthermore, should the saved RSP and RBP
restored to prevent faults.

Destroying the enclave An enclave can only be destroyed with the supervisor ER-
EMOVE instruction. It deallocates the EPC pages by marking the EPCM entry as invalid
if no logical processor is executing the page-owning enclave. After all EPC pages have
been set to invalid the SECS page can be removed.

Attestation

Attestation is a core feature of the trusted computing model. The attestation guarantees
the integrity and authenticity of the trusted components by signing an enclave measure-
ment. The measurement of an enclave is the same every time the enclave is initialised.
In Intel SGX the EGETKEY and EREPORT instruction are used for attestation [1]. Both
instructions can only be executed from inside of an enclave.

To perform an attestation an enclave must be measured and signed. Each enclave contains
two signing identities, MRENCLAVE and MRSIGNER.

MRENCLAVE is the identity of the enclave. It is created by using a hash of the internal
build log, which was written during ECREATE, EADD, EEXTEND and finalized using
EINIT. Therefore MRENCLAVE contains information about the content of the pages, the
position of the pages and the security flags. The MRENCLAVE will be the same for every
build cycle, if the enclave is not modified.

MRSIGNER is also called the Sealing Identity, because it can be used to seal data (see sec-
tion 2.1.5). The public Key is retrieved of the Enclave Signature Structure (SIGSTRUCT),
which consists of information about the Enclave, the value of the expected MRENCLAVE
and a public Key of the Sealing Authority. Furthermore, is SIGSTRUCT signed with the
Sealing Authority’s public key, which can be verified. When the value of MRENCLAVE
in SIGSTRUCT and the calculated MRENCLAVE are equal the hash of the public Key of
the Sealing Authority is saved in MRSIGNER. MRSIGNER is the same for all enclaves,
build by the same Sealing Authority. This for example allows updating of the enclave
content while using the same encryption key for sealing operations.

Intra-Platform Attestation By using MRENCLAVE and MRSIGNER it is possible
to certify the identity of two enclaves against each other to guarantee the integrity and
authenticity of the enclaves before negotiating a secret channel.

An Intra-Platform attestation workflow is shown in Figure 2.9. The sequence diagram is
minimised to the enclaves only, in reality the communication will be managed by a host
application.
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Encl. A MRSIGNERp MRENCLp Encl. B MRSIGNERg MRENCLp
1. send MRENCLg
2. EREPORTMRENCLg ) 3. send Report8
( . sen A
ReportBA™~—, > 4. EGETKEY
D ReportKeyg
5. cmp MAC ReportBa
to MAC Reportkeyg
6. check MRSIGNERA
MRENCL A
8 o Reporta 7. EREPORT MRENCLA
. send ReportAg
4. EGETKEY ReportAg
ReportKey o
5. cmp MAC ReportAg
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6. check MRSIGNERR
MRENCLB C:

Figure 2.9.: Intra Plattform Attestation between two enclaves, communication is simplified.

First the EnclaveB sends its identity (MRENCLAVEg) to EnclaveA. EnclaveA calls EGE-
TREPORT with MRENCLAVEg to generate ReportB,, a report of EnclaveB which is
signed by EnclaveA. The essence of the ReportB, is the signed MAC of the target en-
clave B, a secret Intel SGX master key and and the SECS attributes of Enclave A. Detailed
information about the data flow can be found in [11].

In the third step this is report send to EnclaveB. EnclaveB retrieves its ReportKey to
compare its MAC with the MAC in the Report. The MAC guarantees that both Enclaves
are running on the same CPU (same secret Intel SGX master key in the CPU) in enclave
mode.

In step six the MRENCLAVEA is evaluated with MRSIGNERA. That proofs the authen-
ticity and integrity of EnclaveA. EnclaveB has now sucessfull been attestated EnclaveA.
EnclaveB can now send its ReportAB to EnclaveA. As a result both Enclaves performed
the attestation of each other.

Remote Attestation Intel proposes a model [1] for remote attestation. Additional
Enclaves are required because instead of attesting 2 enclaves at one system via symmetric
cryptography, asymmetric cryptography is used for remote attestation. A Quoting En-
clave is used which verifies an enclaves report. It replaces the MAC of the report with a
signature over the report. The signature is generated with a CPU specific private key. The
report, also called Quote, can send to a remote party for verification.

Intel uses an Intel Enhanced Privacy ID(EPID) [7] as anonymous attestation scheme. The
EPID bases on a fusekey which is build into the CPU during manufacturing. A database
of these fusekeys is maintained by Intel. With the help of a Provisioning Enclave an attes-
tation key can be retrieved by Intel’s provisioning service [26]. The EPID can be revoked
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if the private key of the CPU is considered insecure via the back-end infrastructure.

Costan and Devadas [11] analysed the Remote Attestation feature in great detail. Remote
attestation is not in the scope of this thesis and therefore will not be analysed any further.

Provisioning / Sealing

During enclave execution the data of the enclave is secured with measures described in
2.1.5. When exiting the enclave the pages will be cleared and no enclave state is saved. As
described in section 2.1.3 a trusted computing feature is the sealing of data. The integrity
and confidentiality of this data must be guaranteed.

enclave information CPU information
enclave control structure Intel SGX CPU SVNs
enclave attributes device/root/master key
MRSIGNER CPU seal key
MRENCLAVE CPU provision key
enclave SVN
key request structure : ;
Keyname system information
policy owner epoch
MRSIGNER
MRENCLAVE EGETKEY | |Launch/Init Key/Token
CPU SVN Report Key
enclave SVN Seal Key

Provisioning Key
Provisioning Seal Key

Figure 2.10.: Key hierarchy and generation as described in the Intel SGX manual [25].

Figure 2.10 shows the components which influence the SGX EGETKEY function. It is
only possible to generate the same key again if all of the required parameters are the same
as in a prior key generation. The key generation process and its consequences for sealed
data will be described in the following.

The Intel Skylake Processor contains two different keys for provisioning and sealing. The
provisioning key is known to Intel and can be used to encrypt secrets. These secrets
which can then be send to the enclave and encrypted during its execution. By using a
sealing key, only known to the the enclave itself, data can be sealed and unsealed [1].
With EGETKEY the seal and provision key can be retrieved. Intel provides different
policies which are bound to the keys usage. These policies are based on MRENCLAVE
and MRSIGNER, discussed in 2.1.5.

If EGETKEY is called with the policy MRENCLAVE, it will seal the data specific to the
enclave identity. Any change in the enclave will lead to a different seal key. Only this
specific enclave instance is able to generate the same seal key again. Therefore, data can
be encrypted and decrypted only by this enclave on this single CPU.
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MRSIGNER will allow the sealing to the Sealing Identity, the author of the enclave. The
generated seal key can be used by multiple enclaves of that enclave signer to access the
same data. An applications product ID and a Security Version Number (SVN) are included
in the sealing identity. The SVN can be used for invalidate old sealed data if a security
flaw is patched in a newer enclave version. This sealing model is usefull to allow the
usage of data by multiple enclaves.

Personal entropy can be added to the key derivation via the OwnerEpoch value. If the
value is changed, the previously generated seal key cannot be generated with the same
seal policies again. Therefore, a modification of OwnerEpoch can used to make sealed
data on the system inaccessable. OwnerEpoch is loaded into the MSR when SGX is
booted [25].

The official documentation of SGX [25] describes the key hierarchy briefly. A in-CPU
key is used as unique root key of the key hierarchy. The keys which are returned by the
EGETKEY instructions derive from that key. Costan and Devadas [11] describe the root
key as SGX Master Derivation Key, which is used in all key derivation processes. That
leads to the assumption that a sealed secret can not be encrypted by the same enclave on
another CPU because the root key differs.

2.1.6. SGX SDK

The Intel SGX SDK provides tools to build and execute enclaves. As described in 2.1.5
an Intel Launch Enclave is needed to generate the launch key for a custom enclave. The

Launch Enclave is an Intel Architectural Enclave. The following enclaves are included in
the SDK.

e Launch Enclave - measures custom enclave and provides launch key / EINIT token
for it. Used for licensing purposes in the future.

e Quoting Enclave - signs a report of an enclave with the platform specific Intel EPID
key which can only be accessed by the quoting enclave. Used during remote attes-
tation.

e Provisioning Enclave - Proofs its identity to the Intel Provisioning Service to receive
attestation key. That key is send to the Quoting Enclave for remote attestation.

e Platform Service Enclaves - are used for pairing and protected session management.
Also used for remote attestation, only briefly described in [27]

The architectural enclaves can only be entered from the user mode. Therefore, the SDK
includes the AESM service / daemon which manages the enclaves. In addition, the AESM
service includes a database for the Platform Service Enclave. This database contains ta-
bles with information about nodes, MRSIGNER and other data. This includes the service
a public key for provisioning and an white list certificate. No further explanations regard-
ing these files could be found.
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The communication between the custom host application, which enters the enclave and
the AESM service is established by the SGX libraries. A subset of the libraries that are
included in the SDK.

e sgx_trts - SGX internals

e sgx_tstdc - standard C library

e sgx_tservice - sealing, architectural enclave support
e sgx_tcrypto - cryptographic library

e sgx_urts - enclave management library, creation and entering from host application

To provide SGX functionality in the kernel space the SDK also contains a kernel module
/ driver. That module manages the enclave page cache (EPC) management.

Enclave Building

Intel published the Intel SGX Evaluation SDK tools to build the encrypted enclave con-
tainers and the matching application. The SDK consists of multiple tools which allows
the building, measuring, debugging and configuration of enclaves.

e Edger8r Tool - analyses the enclave’s EDL file and generates interfaces and proxies
between the trusted enclave and untrusted application

e Enclave Signing Tool - generates metadata such as the enclaves signature and adds
the metadata to the enclave

e Debugger - supports the analysis of enclaves with active debug flag
e Memory Measurement Tool - analyses the memory usage of the enclave

e CPUSVN Configuration Tool - used to configure the security version of the CPU
which affects its key derivation process

Building Workflow Enclave Generation is the building of the enclave container and
the application with the SGX SDK. The application is the untrusted non-encrypted part
which starts the enclave. Enclave creation is the process in the application itself which
launches the enclave.

To generate a running enclave with the Intel SGX SDK following files are required.

e Intel SGX SDK include files - especially the sgx_urts which is used by the applica-
tion to create and launch the enclave

e Intel SGX SDK library files - especially the sgx_edger8r and sgx_sign

e Intel isgx Kernel Module - for executing the new SGX instructions and management
of the EPC
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e Application source file
e Enclave source and EDL file

In Figure 2.11 the building workflow is visualised. The enclave EDL file is parsed by the
Edger8r which generates the Enclave Interface files. The generated interface definitions
and implementations are used by the enclave and the host application for communication.
The SGX Libraries are required during the linking. The generated library is called an
unsigned library. By using the SGX signer a certificate of the enclave and its configuration
is created. The generated enclave library is signed and can be used in an host application.

SGX Edger8r

| Enclave.edl | | Enclave Interfaces |
| Enclave.c | compiling
| Enclave obj files |
| SGX Libraries } linking
|Enclave unsigned lib]
SGX signer

| Enclave signed lib |

Figure 2.11.: The building workflow with the Intel SGX SDK.

In the following, an example demonstrate the building of an Enclave and its application.
The enclave offers a trusted function which changes a char array.

EDL file describes the interfaces between the enclave and the untrusted application. It
is read by the edger8r tool which generates the edge routines for the interfaces.

The EDL file is divided in an trusted (enclave) and untrusted (application) part. The return
value, function name and parameters are user defined. If another return value than void
is defined, the value can be retrieved in the function call as 2nd parameter. An example
EDL file is shown in Listing 2.12.

The following parameter definitions are available:

enclave {
trusted { // secured enclave calls
public wvoid ecall_changeBuf (
[in, out, size=len] charx buf,
size_t len);
}i
untrusted { // insecure outside calls
bi
}i

Figure 2.12.: Enclave.edl interface definitions
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e user_check - the pointer wont be verified by SGX. Neither is the content of the
buffer copied into the enclave. The user is in charge of the check and memory
operations.

e in - During ECALL, the buffer and content will be located inside the enclave. Dur-
ing OCALL, the buffer will be copied from the enclave to the application.

e out - During ECALL, buffer will be allocated and can be used by enclave. On
the function return the buffer will be copied to the outside application. During
OCALL, the untrusted buffer from the application will be checked and copied into
the enclave.

e in, out - Combines [in] and [out] functionality. Like [in] the buffer and content will
be located in the enclave. But on the function return the buffer will be copied back
to the source location. It works the same for ECALL and OCALL.

e isaray - only the pointer is copied into the enclave

Edger8r tool analyses the given enclave EDL file and generates the routines for the
outside and enclave calls. The generated files end with _t and _u, declaring trusted and
untrusted proxies and bridges. The trusted part is used by the enclave, the untrusted by
the application. The generated proxy files can be found in Appendix A.1.

As shown in listing A.2 the edger8r expands the EDL file to the proxys which are used
during compilation of the untrusted application and trusted enclave.

In contrast to a simple untrusted proxy definition, multiple checks are performed when
calling a trusted function. The checks analyse if ECALL parameters point to untrusted
memory and OCALL parameters point to trusted memory. If these checks fail, the cor-
responding CALL will not be executed and an error will be returned. If these checks
were ignored the CPU itself would handle these invalid calls with faults or pointers
to non valid addresses. During an ECALL the checks CHECK_REF_POINTER and
CHECK_UNIQUE_POINTER ensure that the structures do not overlap the enclave mem-
ory. In this example the buffer is passed as [in] attribute, so the trusted bridge allocates
memory in the enclave and copies the memory from the outside pointer to the inside.
These functionality is explained in detail in the Intel SGX SDK Users Guide [27].

Intel gives the notice that it is crucial to the integrity of the enclave that the Edger8r
tool is run in a malware free environment. The correctness of the checks guarantee a
secure usage of the enclave functions, therefore they should be reviewed by the enclave
developer.

Enclave trusted function and main application The Enclave.c (Listing 2.13)
only contains the trusted enclave function. Inthe ecall_changeBuf function is buffer
referenced. A secret is copied to the address of buf if the 1en is greater then the
length of the string in secret. This is a dummy function without the claim to be secure.
Hardcoded secrets must not be included in real enclave applications because the enclave
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#include "enclave.h"
#include "tlibc/string.h"
#include "tlibc/stdio.h"

void ecall_changeBuf (char xbuf, int len)
{

const char xsecret = "Hello_from Enclave!";
if (len > strlen(secret))

{

memcpy (buf, secret, strlen(secret) + 1);

}

Figure 2.13.: Enclave.c trusted function which copies a in-enclave saved string to the buffer.

#include <../include/sgx_urts.h> // sgx structs func
#include "Enclave/enclave_u.h" // enclave functions

ret = sgx_create_enclave (
"./Enclave/enclave.so",
DEBUG_ENCLAVE,
&token, &updated, &eid, NULL );

// Change the buffer in the enclave

char buffer[100] = "Hello_World!";

printf ("App: Buffer before_change:_%s\n", buffer);
ret = ecall_changeBuf (eid, buffer, 100);

Figure 2.14.: App.c untrusted code

library file is not encrypted. It is possible to optain these secrets by reverse engineering.
Secrets must provided the way it is described in Intel’s secure provisioning schemes.

The App.c (Listing 2.14) uses the generated _u header files and creates the SGX enclave
using the sgx_urts library. Itis not necessary for the host application to be aware of the
source code of the enclave. It just refers to the untrusted proxy files. To create the enclave
the sgx_create_enclave function of the SGX library is called with the enclave file
path as parameter beside others. The enclave file is created by the Signing Tool. When
calling the trusted enclave function the first parameter must be the enclave ID which was
returned during the enclave creation. The return value of the trusted function is a SGX
error code.

Signing Tool The signing tool guarantees the enclave integrity by creating a signature
of the properties and the enclave measurement. Intel states that modifications on the
enclave code, its properties or the signature can be detected that way. The signing tool
also checks for errors and security related problems.
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The signing tool uses a RSA 3072-bit key pair to sign the raw signature properties. A
requirement of creating enclaves in release mode is to sign them with white-listed enclave
signing keys. These keys must be stored in a hardware security module. Today it is
unknown how one can obtain such white-listed signing key from Intel and what licensing
model is applied to them. A white list certificate is included in the Intel SGX SDK AESM
Service.

The signing tool also analyses the linked libraries and used functions for possible security
vulnerabilities and informs the user about them.

2.1.7. SGX Availability

As previously summarised in the SGX history section 2.1.2 Software Guard Extensions
capable Intel Skylake Processors'* are available since August 2015.

The Product Change Notification [29], published on October 1, 2015 declared that the
available CPUs are not able to execute SGX. A minor change in the manufacturing con-
figuration allows the usage of SGX on so called post-conversion CPUs distributed past
October 26, 2015. The post-conversion CPUs can be identified by the S-Spec number
(printed on CPU) or the material Master Number (MM#). If the CPU is already installed
SGX support can only be tested via executing a SGX Enclave application. There is no
possibility to retrieve information about the conversion type.

Enclave

Host Application
SGX User Lib

Intel Launch Enclave

Linux SGX LKM | Windows 10 Fall Update
Mainboard BIOS with SGX Support
CPU with SGX

Figure 2.15.: The components needed for executing an enclave. Gray components must be deliv-
ered by a third party and must be trusted without the possibility for reviewing.

Before using SGX it must be enabled via the SGX_ENABLE field IA32_FEATURE_CONTROL
MSR [25]. SGXis defined as opt-in, so MSR.IA32_FEATURE_CONTROL.SGX_ENABLE

is default 0. However the modification of the IA32_FEATURE_CONTROL is prevented

by its first lock bit, if it is set to 1. In the manual [18] the lock bit is described as:

http://ark.intel.com/products/codename/37572/Skylake
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When set, locks this MSR from being written, writes to this bit will result in
GP(0). Therefore the lock bit must be set after configuring support for Intel
Virtualization Technology and prior to transferring control to an option ROM
or the OS.

Therefore, SGX can only be used if it is supported by the BIOS where it must be activated.
If SGX enable is set, the BIOS will reserve the SGX related memory. That memory is the
the processor reserved memory (PRM) [31].

Because of the opt-in functionality of SGX it must be activated in the BIOS. Hardware
vendors showing different interest in enabling SGX support in their BIOS. Today, 9 month
after the initial launch of SGX, only a few Notebook BIOS Drivers and no Mainboard
BIOS Driver with SGX support is available!®. Dell began shipping its newer devices with
BIOS SGX support in the second quarter of 2016.

However, no desktop mainboard BIOS with SGX support is available at this time. The
open source BIOS libreboot does not support newer Intel CPUs because of security and
freedom issues'®. Another free BIOS alternative coreboot is unable to run on devices
with activated Intel Boot Guard [24] which secures the UEFI firmware to protect against
malicious modifications'”.

Because of the new instructions and the complex lifecycle of an enclave (section 2.1.5)
it is not possible to execute SGX without further software components. An Intel signed
Launch Enclave is needed to create a EINITTOKEN. Only an Intel-signed enclave, can
be initiated without the EINITTOKEN because of public-key crypto which uses a in-CPU
saved key to verify the authenticity of the enclave [25].

In Figure 2.15 the required components for enclave execution are shown. At the base is the
CPU with SGX support. The SGX support must be enabled by using the SGX_ENABLE
bit in the MSR. That is only possible in the BIOS because the MSR will be locked then.

In Linux it is possible to patch the kernel with SGX functionality'®. The Linux SGX SDK
includes the SGX kernel module in text format. On Windows the Windows 10 Fall Update
must be installed for managing enclaves. The Intel Architectural Enclaves are the only
ones who can be executed without a prior Launch Enclave. Any other enclave depends
on the proprietary Intel Launch Enclave. The Architectural Enclaves are managed by
a Daemon / Service running in user-mode. Intel includes this service in its SDK. For
executing own enclaves a similar service can be developed!®.

Sincomplete list of hardware with SGX support: https:/github.com/ayeks/SGX-hardware

16https://libreboot.org/faq/#intel
Thttps://blogs.intel.com/evangelists/2015/02/20/tricky-world-securing-firmware/

8open linux sgx kernel module: https://github.com/jethrogb/sgx-utils/tree/master/linux-driver
open source SGX user-mode service: https://github.com/jethrogb/sgx-utils/tree/master/sgxs-tools
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2.1.8. Use Cases

In its initial whitepapers Intel demonstrated use-cases for the Software Guard Extensions
[1] [20]. In this chapter the published use-cases for SGX will be characterised and as-
signed into groups. To our knowledge no approach was made of using of SGX in kernel
as described in chapter 3.

The use-cases of SGX can be differentiated in shielded execution, policy based configu-
ration, deployment / provisioning, identification / attestation and Digital Rights Manage-
ment (DRM). Some categories are not clear separable from others, this will be discussed
in the following

The patent for the Intel SGX technology was first filed on Dec. 17, 2010 as Technique for
supporting multiple secure enclaves[34]. That patent describes a system which consists
of multiple processors and platform keys to secure the execution of enclaves. Another
patent by Intel filed on Jun. 19, 2012 describes the provisioning and sealing process [43].
Both patents also describe methods to enforce a business model which will discussed in
Section 2.1.11.

Shielded execution

In 2014, a year prior the public release of SGX, Microsoft proposed a prototype, Haven
[3], which uses the SGX hardware protection mechanisms. Haven allows the execution
of unmodified legacy applications like SQL Server and Apache. This defends against a
malicious host in cloud-computing scenarios. Their objective is to execute applications on
a cloud platform with the same trust level of a own datacenter. The legacy applications are
not aware of SGX, they can allocate memory, throw exceptions and execute instructions
which are forbidden in an enclave. Haven is using an in-enclave OS, based on their
Drawbridge ABI [50], to implement the Windows 8 API for the legacy application in the
enclave. Additional remote-attestation can be used to verify the remote enclave at a cloud
computing vendor.

SGX falls short when the syscalls to the host OS are manipulated to defeat the enclave se-
curity mechanisms. Sophisticated manipulation can be used to alter OpenSSL certificate
checks to establish an untrusted connection. These attacks must be crafted and can be
used only for a single vulnerability of the enclave. Tople et al. [59] discussed these attack
and proposed LEVEEFS as a approach to abstract filesystem management which ensures
secure file I/O inside an enclave. The TCB of LEVEEEFS is small, compared to Haven
where the complete filesystem management is included in the enclave. A small TCB stat-
ically guarantees fewer vulnerabilities, which are ported into the enclave. LEVEEFS is
achieving that by modifying the host OS, which was avoided in Haven.

Another Microsoft Research group developed the system Verifiable Confidential Cloud
Computing (VC3) [54] to secure MapReduce computations. VC3 runs on an unmodi-
fied Hadoop and shields the MapReduce from the OS or Hypervisor. The TCB of VC3
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only consists of the map and reduce functions which are executed in an enclave environ-
ment. The MapReduce key-value pairs are encrypted outside the enclave. The deployed
enclaves can be tested by standard SGX remote-attestation mechanisms ( 2.1.5), which
also allows the user to securely initiate a secret communciation channel to distribute the
encryption key. A patent which covers the VC3 system has been filed on Feb. 7, 2014 by
Microsoft [10]. Ohrimenko et al. [48] analysed VC3 regarding information leakage via
Side-Channels, which where out of scope in the original VC3 paper. They were able to
recover sensitive information although VC3 encrypts all its data.

The researchers behind OpenSGX [37] implemented two use-cases on top of their SGX
emulator. A first implementation hardens Inter-domain Controllers which calculate rout-
ing paths. In a second model they extended the Tor network with remote-attestation for
its nodes to build trust between them. Modified nodes can be detected and excluded from
the network.

A patent filed on Sep. 20, 2014 by Horovitz et al. [21] disposes the user-mode limitation
of SGX enclaves and proposes an architecture to execute a full-system emulator within
a hardware-protected enclave. That enclave can host a virtual machine, which again can
host other enclaves (which are managed by the host OS, but used from the enclave VM
OS). Nevertheless, there are multiple difficulties which must be overcome to execute a
full system in an enclave.

Policy based configuration

Intel and other companies registered patents for technology, mechanisms or use-cases to
protect their rights. Often these patents differentiate only in a few aspects. As Costan and
Devadas [11] stated the patents of Intel are interesting because they complete the SGX
reference papers with some aspects on how to use SGX in the future.

In an Intel patent [55] filed Sep. 10, 2015 is a sensor privacy mode described. That privacy
mode allows the device to grant sensor data access rights based on a policy. The privacy
mode, along with SGX, allows to regain some control over the behaviour of ubiquitous
computing devices, like smartphones.

McAffee patent [49] filed Dec. 4, 2014 extends the previously described Intel sensor
privacy patent with location aware configuration control. That allows the setting of a
configuration in a mobile device via tracking stations. That can be used by companies to
deactivate the microphone of smartphones during a meeting, or disabling the camera in
an art gallery or cinema.

Deployment / Provisioning
The Microsoft researchers, who published the Drawbridge ABI [50] and Haven [3], also

filed a patent on Jun. 30, 2014 regarding the securely storing of data in public clouds
[23]. In essence they describe a model to provision encrypted data for specific CPUs
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which can only be decrypted with a in-CPU saved secret key. It is similar to the Intel
EPID architecture [7] which is used in the SGX provisioning. Another Microsoft patent
[14], filed on Oct. 01, 2014, is using that provisioning model to secure management
operations in the cloud computing environment.

The Symantec Patent [52] filed on Nov. 20, 2014 describes a deployment model of ap-
plication containers with remote attestation. It differentiates from known deployment
schemes because it not only analyses the application itself, but the deployment environ-
ment. If a set of requirements match, the application is transferred to the computer. That
could be used to provision SGX enclaves to SGX capable devices.

Identification / Attestation

The attestation scheme of SGX can be used for identification purposes. Intel filed a patent
on Sep. 24, 2014 [12] which establishes attestation (2.1.5) between two enclaves via the
front cameras and QR-codes which were shown on the display. The attestation can be
used to initialise a secret channel between the two devices.

Another authentication patent was filed on Sep. 23, 2014 by Intel [51]. SGX is used to
authenticate hardware components of modular device, like 2-in-1 laptops. The standalone
display works as tablet and can be authenticated to the bottom (keyboard) part of the de-
vice. That authentication can take place via network communication. A secured channel
can be established. In consequence, users can use the tablet part of the laptop to access
the data, stored on the hard drive in the bottom part of the device.

A McAfee patent, filed on Jun. 27, 2014, [47] describes the usage of remote attestation
to securely identify a user against a caller. During the call additional identification data is
send to the caller, which allows the identification. This authentication could replace the
security questions, asked by financial institutions, which are easy to defeat by social en-
gineering. Another application field is a DRM purpose in which a device can authenticate
its identity or licence against the content provider.

Digital Rights Management (DRM)

Digital Rights Management covers the protection of copyright content. DRM systems
control how to use, access and distribute digital content. DRM technologies are for exam-
ple the usage of product keys, limited online registration, persistent online authentication,
content scrambling system?’, protected media path?! or the Advanced Access Content
System (AACS)[6]. None of these systems is able to provide perfect protection of the
content. The main weakness of the prior DRM approaches, like AACS, were that the de-
cryption keys could be extracted®? by debugging the memory range of the blu-ray player
program.

https://www.cs.cmu.edu/ dst/DeCSS/Kesden/
2Ihttps://msdn.microsoft.com/en-gb/library/aa376846.aspx
2http://forum.doom9.org/showthread.php?t=119871
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Intel describes a DRM system based on a patent filed on Dec. 19,2013 [41]. Two enclaves
are used for there DRM system. One enclave inspects a policy and authenticates a second
enclave, if the infrastructure meets the policy requirements. The second enclave decrypts
the encrypted content. Via the SGX provisioning model can authenticate the enclave
its identity against a content provider. The content provider can add the enclave to a
whitelist and distribute a whitelist ID to the enclave. This whitelist ID is send to the
content provider and checked each time before entering a secured session. The content
provider can revoke the whitelist ID when he suspects misuse of data or a media licence
expired. In consequence, the secure session will not be initialised and the content will not
be decrypted. Via using remote-attestation and provisioning content owners can build a
system where the decryption keys cannot be obtained.

2.1.9. Attacks on Enclaved Systems / Untrusted OS

By design it is not possible to access the SGX enclaves memory from the outside. There-
fore attacks concentrate on side channels to gain information about the enclave’s data.

Intel reminds in a blog post? that it is not enough to develop cryptographic libraries
which are side-channel resistant. Furthermore, the application must guarantee that no
information can be inferred by the observation of access and timing patterns.

Xu et al. [63] introduced controlled-channel attacks which allow the extraction of sensitive
applications. They analyse the control flow inside the trusted application by triggering
page faults on defined memory regions. That allows the recognition of control flow based
on the input. They were able to modify the untrusted part of Microsofts Haven[3] to
execute this attack on different programs. They were also able to recover text and image
data from the enclave.

Tople and Saxena [58] examined different applications regarding input oblivious execu-
tions. These execution guarantees that an observer is not able to gather relevant informa-
tion of the input of the applications. If an application is not input oblivious a logic-reuse
attack could be carried out that leaks encrypted data.

Checkoway and Shacham [9] developed lago attacks which modify the kernel to return
malicious return values on system calls. These can lead to an exploitation of application
behaviour to gain information about its input. The lago attacks make it clear that it is
complicated to secure an application against an untrusted operating system. Although
Iago attacks are available on other untrusted OS architectures, syscalls are not available
in a SGX enclave and therefore forbidden. Furthermore, the available instructions and C
functions are limited that the proposed lago attack on OpenSSL wont be possible.

Ohrimenko et al. [48] observed MapReduce jobs on encrypted data which were decrypted
on the nodes inside SGX enclaves. They were able observe and exploit the traffic between
the nodes, which leaked sensitive information although the data itself was encrypted.

Bhttps://software.intel.com/en-us/blogs/2015/05/19/look-both-ways-and-watch-out-for-side-channels
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Instruction Result | Description

CPUID, GETSEC, RDPMC, SGDT, | #UD | Can cause VM exit because VM

SIDT, SLDT, STR, VMCALL, VM- tries to emulate instr.

FUNC

IN, INS/INSB/INSW/INSD, OUT, OUT- | #UD | I/O faults may not safely recover,

S/OUTSB/OUTSW/OUTSD resulting in VM emulation attempt
and possible VM exit

Far call, Far jump, Far Ret, INT n/INTO, | #UD | Instr. load descriptors from

IRET, LDS/LES/LFS/LGS/LSS, MOV GDT/LDT which change privilege

to DS/ES/SS/FS/GS, POP DS/ES/SS/F- levels. Enclave execution must be

S/GS, SYSCALL, SYSENTER CPL=3 and must not be changed.

LAR, VERR, VERW #UD | Access kernel information which
can be used for kernel exploits.

ENCLU[EENTER], EN- | #GP | Anenclave cannot enter another en-

CLU[ERESUME] clave.

Table 2.2.: Illegal instructions inside an enclave [25].

They proposed an additional shuffle and balance layer to avoid these side-channel infor-
mation leakage.

2.1.10. Limitations of SGX

The design of Intel SGX leads to different limitations. It heavily depends on the usage of
SGX where limitations matter to an enclave developer. The main restriction for developers
is the reduced instruction set [25]. The instructions which cannot be executed from inside
an enclave can be seen in Table 2.2. These instructions are forbidden because they can
be used to weaken the SGX security properties by causing a VM exit or by changing
privilege levels.

Another limitation that can cause additional effort in the design and implementation of
TresorSGX is that an enclave can only be entered from ring-3, the user space, and not
from kernel space. The designated use-case for SGX enclaves is the user-space. That
is a big difference to other approaches like the Arm Trustzone[2] which enables a secure
privileged world.

Intel lists a number of standard C functions which can not be used in an enclave [27].
If these functions are used, the compilation of an enclave will fail because the functions
are not implemented in the SGX SDK header files. Some unsupported functions are for
example used for complex math, file input output, jumps, signals, string operations and
time operations. The trusted SGX SDK functions are hardened to withstand string and
buffer overflow attacks.

The current version is SGX1. With SGX2 an enclave developer is able to add memory
to an enclave when the enclave has been initialised and is running. Also new threads can
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be added to a running enclave. With SGX1 the enclave execution is limited in its fixed
memory range and thread number.

2.1.11. Future of SGX

As in Section 2.1.8 described numerous use-cases for Intel SGX exist. The reasons to use
the SGX technology range from protecting the user against malicious hosts, to enforcing
of corporate device policies, provisioning of secrets and digital rights management.

As previously analysed it is not possible to use the Intel SGX without an Intel Launch
Enclave. During analysis of SGX it became apparent that the Launch Enclave is an ad-
ditional mandatory step which is designed to enforce policies. Costan and Devadas [11]
mark the Launch Enclave as unnecessary approval instance which allows Intel to force
itself as mediator between the enclave developer and the end-user. This intention is not
written in any official documentation, but in the Intel patents of 2010 and 2012.

Enclave Authentication also provides a foundation to outsource Enclave mi-
crocode flows, Flexible Sealing & Reporting, as well an enforcement point
for a number of new business models. [...] The enclave license indicates
who the source/accountable entity for the enclave is, any special capabilities
the enclave requires, and any additional information needed for identifying
the particular business model/agreement that enabled this enclave. [...] For
example, [Vendor] A could purchase a license authorizing them to produce
enclaves for use in A’s video player. To do this, Intel would create a license
for the Vendor A’s video player Root Key, along with capabilities that Intel
permits Vendor A to use in video player enclaves. Vendor A will then use the
video player Root Key to sign individual license files for each video player
revision they release. [34] [43]

The licensing scheme for SGX is currently unknown. On an enquiry regarding the licens-
ing scheme, Intel asked for additional information regarding the company and the use
case where SGX should be applied. That indicates that Intel will not open the licencing
scheme to the public but rather negotiate that in private with each business partner. Such
business partners have to perform a set of actions to secure the key material:>*

e Secure Software Development - the enclave must be developed following good
programming guidelines described in the Enclave Writers Guide[28]. Futhermore,
the developer must notify Intel when vulnerabilities appear in the application. The
vulnerabilities must be fixed in a pre defined time. The newest version of the Intel
SDK Plattform software, that is required for executing the enclave, must be included
and distributed with the application. It is forbidden to write enclaves that behave
like malware or spyware. The enclave must not consume all available EPC memory
or influence the system stability.

Zhttps://software.intel.com/en-us/articles/intel-sgx-product-licensing
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An interesting point is that the user-experience should not be influenced if an en-
clave can not be executed. That conflicts with the DRM use-cases where a media
stream can only be decrypted if an enclave can be executed. It becomes apparent
that Intel decides problem specific about the granting of licences.

¢ Enclave Signing Key Management - the developers must demonstrate their pro-
tection of the key material which follows the industry best practices for key manage-
ment?>. These practices contain requirements like multi-factor authentication for
access, infrastructure security guidelines and usage of hardware security modules
for certificates. Also the developer agrees to inform Intel if any data loss regarding
the enclave, keys and certificates happens.

e Relying Party Functions - the developed SGX application will be managed and
delivered to SGX capable systems using a self hosted distribution system. This
systems depends on the Intel Attestation Service. The distribution system must
guarantee the ability to withstand attacks which aim to prevent the distribution of
patched enclaves. It must be able to process SGX Quotes and deliver SGX Plattform
updates. Therefore, it must match the security properties of the Intel Attestations
Service (in terms of service licence agreements, DDoS prevention, etc.).

It is currently not possible to highlight the future usage of SGX in detail. Companies
must decide if their confidential data, their intellectual property or the rights of their users
are worth the cost of implementing a technology which is very prone to vendor lock-in
difficulties. Furthermore, an secure development environment and a managed distribution
system must be installed which has to match the guidelines by Intel for licensing purposes.

2.2. OpenSGX

OpenSGX is an open source platform for developing and researching the software guard
extensions architecture®®. OpenSGX, developed by Jain et al. [32], provides an emulator
for SGX instructions, tools to build enclaves and libraries for interactions with custom
enclaves. Their emulator is based on QEMU?’.

During the first part of preparation for this thesis SGX capable hardware was not available
or could not be used. Therefore, OpenSGX was evaluated for its usability in the scope
of this thesis. Because of the later described limitations it was no further used with the
release of the Intel SGX SDK.

Zhttps://www.thawte.com/code-signing/whitepaper/best-practices-for-code-signing-certificates.pdf
ohttps://github.com/sslab-gatech/opensgx
2Thttp://gemu.org
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2.2.1. Motivation

The Intel Software Guard Extensions are an addition to the instruction set of the processor.
QEMU emulates the processor by using dynamic binary translation. OpenSGX extends
the functionality of QEMU with support for SGX instructions.

However, because of the complexity of SGX it is not sufficient enough to emulate the sin-
gle user mode instructions. The management of the enclave memory must be performed
in a privileged area.

OpenSGX is a complete self-contained software platform. This eases the development
and debugging because, in contrast to Intel SGX, a developer can analyse the state of the
program and system at any point. No privileged instructions are hidden, or closed source
Intel enclaves are involved.

2.2.2. Architecure

As described in the Intel SGX architecture Section 2.1.5, the SGX architecture consists of
different components. The components provide functionality for EPC-PRM management,
enclave initialisation and creation. The main components and their connections are shown
in Figure 2.16. OpenSGX is build on top of QEMU’s user space emulation which allows
the execution of the host and enclave application. The SGX syscalls are handled by a
SGX OS emulation module. This module manages the EPC and PRM via privileged
SGX instrucitions.

Trampoline / Stub

Host Application fe--«------ St i T s e »| Enclave

SGX syscalls

A 4 user space
user space SGX instr.

SGX instr. SGX OS Emulation

kernel space
SGX instr.

user mode QEMU with SGX support

Figure 2.16.: OpenSGX components for executing SGX enclaves in the QEMU context.

SGX instruction emulation The core of OpenSGX is the implementation of the
SGX instructions in opensgx/qemu/target-i386/sgx_helper.c. Functions are implemented
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to be conform with the information provided by the Intel manual[25]. When using In-
tel SGX, the functionality for EPC management is included in a priviledged driver or
kernel module. At OpenSGX the memory management / encryption and the new SGX
instructions are all included in the helper file.

The OpenSGX team analysed the official documentation in detail to mimic the original
SGX behaviour as close as possible. Furthermore, provides the software implementa-
tion of the SGX hardware functionality an entry point for researchers who are trying to
understand SGX in detail.

OS layer simulation Because Intel differentiates in calls from user space and kernel
space, an OS layer must be emulated in OpenSGX. As shown in Table 2.1, an enclave can
only be initiated from kernel space and entered from user space.

OpenSGX introduces system calls through an OS layer which provides the privileged
functionality. Syscalls are by design illegal in Intel SGX enclaves. OpenSGX provides
trampoline-functions for in-enclave syscall usage. The state of the enclave will be saved,
the context switched to the kernel, the syscall executed in kernel space and then resumed
into the enclave. The return value from the kernel will be evaluated inside the enclave.
These mechanisms can be implemented on Intel SGX too because the syscalls are simple
untrusted function calls and must be implemented in the host application.

SGX toolchain Similar to the build and load tools in Intel SGX tools for OpenSGX
exist. A compiling tool generates an OpenSGX binary which can be moved to the EPC
by using the EADD instructions. A loader moves the data and text section of an enclave
binary into the host program, which can call a syscall to create the enclave. This syscalls
loads allocates and creates the required pages in EPC.

SGX user library Like the Intel SGX libraries user libraries for OpenSGX exist too.
These libraries can be used in the host application for creating, initialising, entering, re-
suming and quoting an enclave. Also the tramponline functions are implemented for
calling enclave functions.

The libraries for in-enclave use were modified. Like in the Intel SGX libraries functions
were removed which would break the enclaves security or are forbidden by design (e.g.
syscalls, unsupported C functions).

Calls from the enclave to the outside, for example syscalls, can be implemented using
so called trampolines and stubs. These functions allow the usage of shared memory for
communication purposes. By using this architecture an enclave could setup a networking
socket at the host application. In a first step the enclave declares the socket parameters in
the stub, invokes the socket via a trampoline which calls an EEXIT. The host application
will execute the trampoline handler with the stub parameters. The results will also be
saved in the stub and the host application calls an ERESUME. This system is very generic
and can serve multiple purposes.

44



CHAPTER 2. BACKGROUND

A similar implementation could be useful for Intel SGX. However, the outside functions
must be implemented in the host application which calls the enclave. This computing
model would ease the import of complete programs which rely on certain syscalls. Nev-
ertheless are these syscalls, calls to an untrusted component of the system. A security
critical application which relies on, for example a correct time which is retreived from a
syscall can be tricked by the host application. This gives a small insight into the difficulty
of porting applications into an enclave environment because standard applications trust
these syscalls. A secure enclave application must never trust the outside functions and
encrypt all its data which is send over outside functions.

2.2.3. Limitations

The overall programming model of OpenSGX is equal to Intel SGX. The enclave lifecy-
cle, the build process and the signing works like they were performed on real hardware.
However, OpenSGX’s implementation differs in a few details.

The EINITOKEN, which is required to initialise an enclave and is not signed by Intel, can
only be retrieved inside an enclave on the Intel SGX platform. OpenSGX does not have
such limitations, therefore the key can be generated with an included keytool.

Finally OpenSGX is based on the user mode emulation of QEMU. QEMU supports two
modes of operation. In full system emulation QEMU emulates the complete computer
with all its components. This allows the usage of full operating systems inside of QEMU.
The user mode emulation is a virtualisation modus for applications. This emulates the
same operating system on multiple CPUs for the application. OpenSGX is based on user
mode emulation and it is therefore not possible to execute OpenSGX in an emulated Linux
kernel. This detail makes its usage to implement TresorSGX impossible because of the
missing kernel. However, the TresorSGX enclave itself can be executed and debugged in
OpenSGX.

2.3. Linux Kernel

The open source operating system Linux was created in 1991 by Linux Torvalds. Since
then the OS evolved and expanded to support many different platforms. Unlike other op-
erating systems the source code of Linux is open and receives patches from thousands of
volunteers around the world®®. The kernel can be extended via loadable-kernel-modules.
These modules are executed in kernel space and do not require a recompiling and restart
of the kernel itself. They can be inserted during runtime.

In this thesis a implementation of a cold-boot resistant drive encryption module which is
initiated by the Crypto API will be described. The Crypto API is located in the Linux
Kernel but can be used by user space processes. The implementation uses SGX for the

2Bwww.linuxfoundation.org/publications/linux-foundation/who-writes-linux-2015
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User Applications Daemons

C standard lib

user space

kernel space

System Call Interface

Linux Kernel Loadable Kernel Modules

Architecture-depended Kernel Code

Figure 2.17.: An overview about the Linux architecture.

secure protection of the cryptographic keys. A limitation of SGX is that an enclave can
only be entered from user space - ring 3 (see section 2.1.10). That makes it impossible
to build the crypto module Tresor completely in kernel space. In the following, a brief
overview about the Linux Kernel architecture, the Crypto API and methods to interact
with user space processes will be given.

2.3.1. Architecture

The main differentiation in Linux can be made between user and kernel space. As shown
in Figure 2.17 are user applications and the standard C library are executed in user space,
whereas the systemcall interfaces and the Kernel itself resides in Kernel space.

The User and Kernel space is clearly separated. User space processes allocate memory in
a different virtual address space than the Kernel, which allocates a single address space.
The kernel is executed on CPU ring 0, which is the level with the most privileges and
direct access to the CPU, RAM and the devices. The user space processes are executed
on ring 3 with reduced privileges.

Although the Linux kernel is a monolithic kernel, kernel modules can be loaded and un-
loaded when the system is running. The kernel-internal application programming inter-
face is not stable - in contrast to the userspace-kernel-API which is stable and maintains
backwards compatibility?®. If an in-kernel interface must be modified because of a se-
curity or bug fix all instances where this interface is used are modified. This leads to a
very high development speed of the Linux kernel itself. Another positive effect of this
approach is that once a device driver is in the main kernel tree, the original developer
of the driver must not modify the driver on every interface change. That is done by the
developer, who introduces the interface modification.

https://www.kernel.org/doc/Documentation/stable_api_nonsense.txt
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2.3.2. Interaction with User space

There are multiple ways to interact from the user space with the kernel space. As previ-
ously described the kernel-user API is stable. User space processes can interact with the
kernel via calls to the System Call Interface or by using the GNU C library, which is a
layer on top of the System Call Interface. For the implementation bidirectional commu-
nication between a kernel module and an user process is needed.

In Linux three different types of device modules which enable bidirectional communica-
tion exist®°.

Char / block devices

Char devices are accessed via byte streams. They are typically used in open, close, read
and write system calls. Known char devices are the /dev/tty ports, the /dev/console or
/dev/null. These devices can be accessed like files, but can only be read sequentially.

Block devices are accessed in Linux like char devices, but are managed by the kernel in
data blocks. Data operations transfer or manipulate whole blocks instead of a byte stream.

Procfs is a virtual filesystem which can be used to access kernel information.?! Many
kernel information and configurations can be retreived via this interface. /proc/crypto for
example reveals information about available cryptographic ciphers. The information is
dynamically generated when a read attempt on the files is initiated, so no persistent data
is stored in a file. Via different functions data can be written to the user space and back to
the kernel space™.

Sysfs is another virtual filesystem which allows the exchange of data via the /sys/ di-
rectory>. It is meant to export kernel data structures to the user space. Sysfs files can be
read or written. These actions trigger specified callbacks in kernel space.

Network devices

Network devices can be physical network interfaces or software interfaces, like Netlink
sockets or a loop back interface. A network device exchanges message packets with
another entity, based on addresses and policies.

Netlink sockets can be used for full-duplex communication between kernel and user space
3%, The prior listed methods involve modification of existing kernel modules and in con-
sequence an obligatory recompile of the kernel. That leads to polluting the kernel space

http://www.makelinux.net/ldd3/

3T https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.ibm.com/developerworks/library/l-proc/
Bhttps://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
3*http://www.linuxfoundation.org/collaborate/workgroups/networking/generic,, etlinky owto
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Figure 2.18.: The Linux Netlink Architecture with the user space Netlink library (filled with grey)

with features that lead to possible stability or security problems®. By defining a Netlink
family and operation, a kernel module and an user process can register at a Netlink socket.
If messages are send to this family, the relevant action will be triggered and is able to parse
the message.

Unlike syscalls the Netlink model allows an asynchronous handling of the messages. An-
other benefit of the Netlink is that the user space application must not poll the device pe-
riodically for a new message from the kernel. By defining a Netlink operation a specific
callback function is set which is directly called when a new message arrives. However, the
Netlink protocol is much more complex than operations on procfs or sysfs devices. The
user space Netlink library3® abstracts the fundamentals of the object based kernel socket
API to simplify the usage.

Figure 2.18 shows the Netlink architecture with the user space libnl library. The routing
family is used for network related communication. The netfilter is for network filtering
purposes.

2.3.3. Crypto API

The Linux Crypto API*’ is a well defined set of methods to use various cryptographic
algorithms with minimum configuration [42]. By using the Crypto API the cryptography
can be easily separated from other program logic. Furthermore, it is possible to use the

3https://www.linuxjournal.com/article/7356
3http://www.infradead.org/ tgr/libnl/
3Thttps://www.kernel.org/doc/htmldocs/crypto-API/Intro.html
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Crypto API transformations from user space processes. The keys are saved by the Crypto
API which ensures that the keys cannot be retrieved in user space. The generic Netlink
library allows the communication with the Generic Netlink API. This library is used in
the later proposed implementation for TresorSGX.

Cipher Management

Kernel Interface

Transform Interface

crypto_alloc_tfm(),
crypto_free_tfm()

Transform Wrappers

crypto_cipher_encrypt(),
crypto_cipher_decrypt(), ...

Transform Algorithm Wrappers Algorithm Implementations

crypto_alg_tfm_blocksize(), | DES, 3DES ||AES || Blowfish |
crypto_alg_tfm_max_keysize(), ...
| SHA1, SHA512 || MD5|

Algorithm Query Interface

crypto_alg_available() .
: Algorithm Management
Core Logic | Digest Logic (HMAC) | | Dynamic Algorithm Loader
| Generic Transforms | | Page Vector Logic ||| Algorithm Registration Interface
- - crypto_register_alg()
|C|pher Logic (ECB, CBC, CTR | |Compressuon Logic | crypto_unregister_alg()

Figure 2.19.: Crypto API architecture. Crypto interfaces are kernel-wide available.

The crypto API is layered to hide the core logic from cryptographic user and algorithm
implementers®® as described in Figure 2.19. The Kernel API provides generic interface
to initiate the cryptography, to encrypt and decrypt data and to gain information about
available cryptographic algorithms and their specification (e.g. blocksize). The user is
able to use a wide variety of algorithms with minimal programming effort®.

The Kernel Interfaces include methods for allocating and releasing a cipher. The cipher is
identified by a name string which must be registered first. Different transform wrappers
are available for encrypting single data blocks or bigger data. With the help of transform
algorithm wrappers an user is able to gain knowledge about the supported or required
block- and keysizes. The Crypto API kernel interfaces trigger actions in the core logic of
the Crypto APIL.

The core logic provides different templates that can be used with single block ciphers.
That allows the implementation of a single block cipher which can be used with multiple

3Bhttps://www.linuxjournal.com/article/6451
https://events.linuxfoundation.org/sites/events/files/slides/Icj-2014-crypto-kernel.pdf
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name : aes
driver : aes—aesni
module : aesni_intel
priority : 300
refcnt HE
selftest : passed
internal : no

type : cipher
blocksize : 16

min keysize : 16

max keysize : 32

Figure 2.20.: /proc/crypto excerpt of the aesni aes crypto cipher

modes like counter mode (CTR), cipher block chaining (CBC), electronic codebook(ECB)
or XEX-based tweaked-codebook mode with ciphertext stealing (XTS).

Usage

A cipher must first be registered at the Crypto API before it can be used. The cipher must
be provided in kernel space. A loadable kernel module can register the new cipher during
runtime. The cipher is registered with information about its name, cipher type, blocksize,
keysizes and the callback functions for the setkey, encrypt and decrypt functions. Cryp-
tographic information about the registered cipher can be retrieved by reading the device
/proc/crypto. Listing 2.20 shows the output of the aesni aes cipher. The properties of a
registered cipher will be discussed in the TresorSGX cipher section 3.3.2.

When the new cipher is registered it can be used by allocating a crypto transformation
and providing a key via the generic crypto API function. The allocated cipher can be used
with the generic crypto API encrypt and decrypt functions.

The described interfaces are primarily for the usage in kernel space. However, the Crypto
API can be used from user space, too. The kernel exports message digest ciphers, sym-
metric ciphers, AEAD ciphers and random number generators via a Netlink family/type.
A user space application must generate a Netlink socket with family/type AF_ALG with
the cipher parameters. By invoking the send and reveive methods on that socket data
can be transferred. The user space library libkcapi*® wraps around the Netlink Crypto
API interface. Developers can use its APl which abstracts from the underlying socket
handling.

A more specific usage of the Linux Crypto API is dm-crypt*'. dm is the device mapper

which allows the usage of physical block devices via virtual block devices. dm-crypt
applies encryption to these devices. It allows the usage of block devices by encrypting
writes and decrypting reads to that device. The user defines which cipher and parameters

“Onttp://www.chronox.de/libkcapi.html
“Thttps://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt
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he wants to use and sets an password in a setup. dm-crypt will encrypt all blocks with the
specified cipher. The Crypto API is used for these transformations. An user can mount
the encrypted device and use it as any other mapped device.
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Based on the foundation build in the last chapter, a SGX enabled cold-boot attack resistant
cryptographic module TresorSGX for the Linux Kernel will be proposed. TresorSGX im-
plements a secure Intel SGX enclave which is used to save the cryptographic key material
and methods for encryption and decryption. As discussed in section 2.1.10 a limitation of
Intel SGX is that the enclave must be entered in user space (ring 3) and is also executed
in this mode. This forbids the usage of the enclave in kernel space only. However, a
new cryptographic cipher in the Crypto API can only be registered by using a loadable
kernel module, which must include the cryptographic functions. Therefore a three layer
approach is described in the next sections.

3.1. Motivation

Disk encryption is a standard procedure to secure the confidentiality and integrity of com-
puter systems. Especially on mobile devices it is recommended to use this feature to pro-
tect the users data. When the device is turned off the data is at rest and no cryptographic
keys are saved on the device. When it is turned on the user must insert a passphrase to
initiate the cryptographic cipher. The key material is saved in RAM when using standard
disk encryption tools.
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3.1.1. Original Tresor

The original Tresor, developed by Miiller et al. [46], uses the processor registers instead
of RAM to store the encryption states and the cryptographic keys throughout the runtime
of the system. This increases the security because the key resides not in RAM which is
prone to multiple attacks.

Tresor uses the CPU debug registers as secure key storage. The encryption / decryption of
one block is handled in an atomic session to prevent context switches. This guarantees that
no sensitive data can be accessed during context switches. Tresor registers its symmetric
block cipher at the Linux Crypto API, which provides multiple cryptographic modes for
the cipher. Tresor applies patches to different kernel modules to prevent the modification
of the debug registers. Therefore, the debug register can not be used when Tresor is
configured.

Multiple attacks on cryptographic material in RAM exist and some can be used against
Tresor, too. Cold boot attacks on DRAM allow the retrieval of encryptions keys after the
system is turned off [19]. Miiller and Spreitzenbarth [45] developed a method to gather
encryption keys from Android phones by using cold boot attacks. Direct Memory Access
(DMA ) attacks , by using ports like Firewire[5] , Thunderbolt[40], ExpressCard[22], USB
OTG][33] allow the extraction of key material in RAM. Tresor stores the encryption keys
not in RAM but in CPU registers, therefore it should be save against cold-boot attacks
or DMA attacks. However, Blass and Robertson [4] developed a DMA attack to extract
the Tresor keys from the registers by changing the kernel control flow. Bus Monitoring
Attacks enable sidechannel attacks on encryption algorithms. By monitoring the access
on public pre computed value tables it is able to break AES, even if the cryptographic
keys are not saved in RAM [61]. Also the original Tresor is vulnerable against that side
channel attack.

During the next sections TresorSGX will be described. References to the original Tresor
will be declared as such. References to just Tresor imply references to the TresorSGX
system.

3.1.2. Benefits of SGX

TresorSGX extends the original characteristics by using SGX enclave and sealing tech-
niques. The usage of TresorSGX makes the system cold-boot resistant against an attacker.
The usage of a sealed salt (as described in section 2.1.5) adds another factor to the en-
cryption key generation. The salt is sealed with a passphrase that is specific to the used
processor and enclave. No other enclave and processor combination is able to unseal the
salt.That hardens Tresor because the password alone is not enough to decrypt the data.
This two-factor approach can be used to encrypt data on a removable storage, which can
only be accessed on a specific computer. If the sealed salt is saved on a removable device,
it will require its physical presence for encryption and decryption.

54



CHAPTER 3. TRESORSGX

3.2. Design

To implement a cold boot and DRM attack resistant cipher for the Crypto API different
requirements must be considered.

e Enclave Management Which application launches the enclave and calls its trusted
functions.

e Communication How is the communication between the enclave’s host application
in user space and the crypto API in kernel space established.

e Enclave Crypto Which methods are implemented as trusted functions? What are
the available cipher and cryptographic modes?

3.2.1. Enclave Management

As described in the SGX architecture section 2.1.5 it is not possible to enter an enclave
from kernel space. The enclave’s code is executed in ring-3 with a reduced set of in-
structions (see SGX limitations 2.1.10) and a limited amount of available memory in the
Processor Reserved Memory. Furthermore, it is not possible to initiate the enclave on its
own, an Intel Launch enclave must be used to generate the enclaves launch token (see
2.1.5).

The initial approach was to maintain and enter the enclave in kernel space. A kernel
module should register the new cipher at the Crypto API and manage the SGX enclave.
However, with the release of more and more Intel SGX documentation it became apparent
that this is not possible.

These difficulties lead to a different approach. The enclave is implemented in an user
space service or daemon. The user space host application is developed in Linux and
is therefore referred to as daemon in the later description. That daemon calls the Intel
Launch enclave for initialisation, which provides a launch key for the enclave. Once the
enclave is running, function calls to the enclave can be made for saving the cryptographic
material and encrypting and decrypting data.

For faster development speed the Intel SGX SDK is used. These SDK’s provides libraries
and tools for enclave creation and communication. It is possible to interact without these
libraries with the enclave. However, the libraries and tools are rather complex and a self
implementation would lead to unneccessary overhead on top of the TresorSGX develop-
ment. Furthermore, the SDK usage guarantees that the implementation is conform to the
SGX specifications because the enclave is analysed during the building process.

The daemon can be started' by the kernel with the help of the usermode-helper API%.
After initialisation the daemon can inform the kernel module about its state and data can
be transferred.

Thttps://www.ibm.com/developerworks/library/l-user-space-apps/index.html
Zhttps://www.kernel.org/doc/htmldocs/kernel-api/ API-call-usermodehelper-setup.html
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3.2.2. Communication with Crypto API

Different communication protocols for exchanging data between kernel and user space
were analysed in section 2.3.2. The Network devices had the advantage that an imple-
mentation is not accompanied with modifying the Linux kernel. In contrast to the original
Tresor it is not necessary to patch the Linux kernel itself, recompile it or reboot the sys-
tem to use TresorSGX. Further, it is possible to implement callback functions on incoming
Netlink messages in kernel and in user space. The other approaches had the disadvantage
that an user space application must poll for new messages from the kernel.

The drawback of the Netlink communication is the reduced throughput. Nevertheless
Netlink interfaces are used in TresorSGX because the scope of this thesis is to design
and implement a proof of concept for moving a kernel functionality into an enclave. The
performance is of secondary importance.

3.2.3. Enclave Cryptography

To provide cryptographic functions that encrypt and decrypt data via the Crypto API a
module must provide at least an implementation of setkey, encrypt and decrypt.
As in section 2.1.10 described some instructions in an enclave are forbidden. Executing
these instructions lead to a fault and the enclave execution stops.

Intel provides a cryptography library in their SGX SDK, primarily for the use in SGX
functions. Therefore, only a limited number of ciphers are implemented in the sgx_tcryto
library [27]. The library includes functions for sha256 creation, AES 128bit GCM, CMAC,
CTR cryptography, 256 bit Elliptic Curve cryptography, signing and verifying of signa-
tures based on the ECDSA scheme. The SGX crypto library is developed for in-enclave
usage. Therefore it is usable without any restrictions. However, the source code is only
provided as binary.

To provide a new cipher for the kernel Crypto API, a simple block cipher must be im-
plemented. When searching for crypto libraries, which contain multiple ciphers and en-
cryption modes, OpenSSL? stands out as open source fully featured library for multiple
protocolls. An enclave which contains the full OpenSSL library could be used by numer-
ous user mode applications which depend on OpenSSL. To benefit of the Intel AESNI
instructions the OpenSSL EVP interface is used.

Different problems were encountered during the porting of OpenSSL into the enclave.
In an enclave it is not possible to use filepointers to read or write files [27]. However,
OpenSSL implements these functions (beside other in-enclave forbidden calls) in numer-
ous functions. Neither setting options like OPENSSL_NO_STDIO nor including only
relevant modules would work. It was not possible to build OpenSSL with only the EVP
relevant modules because of to many cross dependencies. A modified C library which

3https://www.openssl.org/
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provides dummy functions or outside calls for forbidden calls could make the usage of
OpenSSL in an enclave possible. However, such library is not yet available.

mbedTLS (PolarSSL) advertises itself as easy to use, modular and loosely coupled crypto
library. During development it became clear that the configuration possibilities of mbedTLS
are superior to OpenSSL. Compiling and linking the enclave against the pre-built mbedTLS
library worked. However, during signing an error happened which could be traced with
the SGX Evaluation SDK User’s Guide [27] to a problem regarding the use of trusted
libraries inside an enclave. The included libraries are not allowed forbidden instructions.
Furthermore, the called functions must be statically linked to the enclave. By includ-
ing the mbedTLS source directly the enclave was able to use the mbedTLS cryptogra-
phy modules. However, problems occured with an invalid opcode trap during executing
AESNI instructions and a stack segment trap when encrypting with software AES. These
problems must be analysed and debugged in order to make mbedTLS usable in an en-
clave. In general mbedTLS looks more maintainable for this kind of application field
than OpenSSL. These difficulties give an idea of the effort that is required to port an
existing library into an enclave.

Because of the prior discussed difficulties it was decided that taking a minimal approach of
using the small Intel AESNI library* was the best solution. This library provides AESNI
cryptography for multiple keysizes (128, 192, 256bit) on multiple modes block, CBC,
CTR. The library can be successfully included in the enclave and is able to run AESNI
cryptography from inside of the enclave.

To generate an encryption key in the enclave which is based on the user password and a
sealed salt the Password-Based Key Derivation Function 2 (PBKDF?2) is used [36]. This
function is standardised in the RSA Laboratories’ Public-Key Cryptography Standards
(PKCS)°. It is recommended for new applications which implement password based cryp-
tography. The function is definedas DK = PBKDF2(PRF, PWD,SALT,ITER, DKlen).
The derived key D K with length D Klen is generated by a pseudorandom function PRF'
e.g. a HMAC [38]. The specific parameters for the function are the user password PW D,
the salt SALT and the number of iterations /7T E'R of the pseudorandom function. The
iterations, the salt and a version number are saved in a SGX sealed container for later use.

3.3. Implementation

The obstacles that had to be overcome to develop the TresorSGX cryptography system
are described in the prior section. In the following, a high level summary of the workflow
is given and the used components are described in detail.

An overview about the TresorSGX architecture can be seen in Figure 3.1. The following
components were developed during this work. The basis is the Tresor Enclave which

*https://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library/
Shttps://tools.ietf.org/html/rfc2898
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dm-crypt | | Crypto testmgr Tresor Test LKM
Crypto API
Tresor LKM Kernel Space
Tresor setKey User Space
Netlink
PIPE SIGNAL
Tresor Daemon Tresor Tester
SGX User Lib
Tresor Enclave

Figure 3.1.: Overview of TresorSGX architecture. Grey components were designed and devel-
oped during this work.

provides the cryptographic methods and stores the encryption key. The communication
interfaces between the enclave and its host application, the Tresor Daemon, are generated
by the SGX SDK library. For testing purposes the Tresor Tester can call the enclave’s
functions, too. In general, every other application could use the features provided by the
enclave.

The Daemon creates the enclave. When the daemon process is started it forks itself to
a daemon. It can be shutdown with signals. It communicates via Netlink with the Tre-
sor LKM. This Loadable kernel module registers the cryptographic cipher at the Crypto
API. The callback functions for this crypto are implemented in the Tresor LKM. The Tre-
sor Test LKM can be used for testing purposes. Other Tools and Modules that use the
Crypto API, like the Crypto API testmgr or dm-crypt, can use the Tresor Enclave with
that architecture.

The Tresor setKey program is used to set the user key independent of the Crypto API to
harden the system against cold boot attacks. This program communicates over a pipe with
the daemon if it is configured to do so. The user keys from the Crypto API will be ignored
in that scenario.

3.3.1. Lifecycle

In contrast to the original Tresor it is not able to include the whole functionality in a
single kernel module because the enclave must be entered from user space. In Figure 3.2
the sequence of the initialisation, the key setting process and encryption is shown. When
the kernel module is initialised, it registers a Netlink family for communicating with the
Tresor daemon. If the Netlink socket is created it starts the daemon via the user-mode
helper API. The daemon starts and creates the enclave.
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>
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" return c(blk)

Figure 3.2.: Sequence of the initialisation of TresorSGX, a setKey and encrypt call by the Crypto
APIL.

If the daemon is configured to use user keys from the a pipe instead of the Crypto API it
opens a named pipe on a predefined location. The daemon then waits until a user key is
written to that pipe. The advantage is that the user key is not copied in multiple modules
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where it can be accessed by different programs, or optained in a cold boot attack. When
the key is read, the daemon sets the key based on the sealing configuration.

The following flow depends on the daemon’s configuration. If sealing is enabled, it will
load a predefined file from disk. If that fails for any reason, the daemon will generate a
sealed data block filled with zeros. It then calls the key setting function with the sealed
data at the enclave. The enclave checks if the sealed data is valid and unseals it. This
process is described in detail in section 3.3.4. If the sealed data is not valid, it will generate
a new salt and seals it. A Password-Based Key Derivation Function 2 (PBKDF2)[35] is
used to generate a hash-based key on the salt and the password. This key is the AES key
for in-enclave cryptography. The enclave function returns with the sealed data, which can
be saved by the daemon.

If no sealing is configured the daemon just calls the key setting function in the enclave
with the key as parameter. The enclave generates the AES key with the PBKDF2 function
and returns.

After the key setting the daemon creates the same Netlink interface as the kernel module
and sends a message, that the initialisation succeeded, to the kernel. The kernel receives
the message and registers the new cipher at the crypto APL.

The Crypto API key setting is triggered by a process which allocates the tresorsgx cipher
and calls the setKey function with the allocated cipher. The Tresor LKM registered an
own function as callback for setKey, which will be called by the process. This function
sends a message with the key and the operation setKey to the Tresor Daemon.

The Daemon parses the message and determines if sealing is configured or not. It then
sets the key, as described during the initialisation phase.

The daemon finishes the set key routine by sending a success Netlink message to the
kernel. The Kernel module blocks its CryptoAPI-setKey call until it receives this netlink
message as described in section 3.3.2. It then de-blocks and the crypto API function call
returns.

The encryption or decryption process is straight forward. The Tresor LKM encrypt / de-
crypt callback function is called by the user of the Crypto API. The LKM sends a Netlink
message to the daemon, which calls the encrypt / decrypt function at the enclave with the
data block. The enclave performs the cryptographic routine and returns the encrypted or
decrypted block. That block is send to the kernel module via Netlink. The kernel module
copies the block to the destination given in the function parameters and returns.

If the LKM is not able to send a message to the daemon, the module will print an error
message to the syslog and return the function. Blocking states in kernel space are difficult
because no entity is able to remove the blocked module and the whole system will halt
eventually. Therefore, a timeout is applied to the blocking function to avoid such situation.
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static struct crypto_alg tresor_alg = {

.Ccra_name = "tresorsgx",

.cra_driver_name = "tresorsgx-driver",

.cra_priority = 100,

.cra_flags = CRYPTO_ALG_TYPE_CIPHER,

.cra_blocksize = AES_BLOCK_SIZE,

.cra_ctxsize = sizeof (struct crypto_aes_ctx),

.cra_alignmask = 3,

.cra_module = THIS_MODULE,

.cra_list = LIST_HEAD_INIT (tresor_alg.cra_list),

.cra_u = {

.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX KEY SIZE,
.cla_setkey = tresor_crypto_setkey,
.cla_encrypt = tresor_crypto_encrypt,
.cla_decrypt = tresor_crypto_decrypt
}
}
}i

Figure 3.3.: TresorSGX loadable kernel module crypto algorithm structure

3.3.2. Kernel Module

The Kernel Module consists of multiple parts. One part handles the Crypto API trans-
formation calls, another part manages the Netlink communication to the Daemon. In the
following, the usage of the Crypto API and the Netlink interface are described. Based on
these information the detailed program flow is shown.

Crypto APl The TresorSGX Kernel Module registers the tresorsgx transformation at
the Crypto API. When registered, the cipher can be used by cryptography users. The
structure shown in Figure 3.3 is used to register and identify the new cipher.

The crypto algorithm identification structure® contains multiple fields which identify the
cipher and its parameters. cra_name is a generic identifier of the algorithm which is
used by the kernel to look up the provider of the transformation when requested. The
name must not be unique. cra_driver_name must be a unique name of the provider
of the transformation. The cra_priority is used to choose an algorithm if multiple
transformations with the same name exist. The priority is not used in the TresorSGX
system because only one fresorsgx cipher is registered. The cra_flags describe the
transformation further’. They identify the type of the transformation. In this case a single
block cipher is defined. cra_blocksize defines the minimum blocksize for a trans-
formation. If the cipher user uses a smaller block, an error will be returned by the Crypto
API. cra_ctxsize defines a memory size of the cipher context for the Crypto API. The

®https://www.kernel.org/doc/htmldocs/crypto- API/API-struct-crypto-alg.html
Thttps://www.kernel.org/doc/htmldocs/crypto-API/ch02s06.html
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name . tresorsgx
driver : tresorsgx—-driver
module : tresorlkm
priority : 100
refcnt 1
selftest : passed
internal : no

type : cipher
blocksize : 16

min keysize : 16

max keysize : 32

Figure 3.4.: TresorSGX /proc/crypto definition

input and output buffer must be aligned to the cra_alignmask. cra_module defines
the kernel module which provides the functionality for the transformation. cra_1list
contains a pointer to the list itself and is defined for Crypto API internal use. cra_u defines
the callback functions and parameters which match the flags field. A minimal (128bit) and
maximum (256bit) keysize is declared and the callback functions for set Key, decrypting
and encrypting are linked. The usage of the transformation is described in the Tresor Test
LKM section 3.3.2.

The configuration of the available cryptographic ciphers can be retrieved by reading
/proc/crypto. In Figure 3.4 the configuration for the TresorSGX cipher is shown
which is equal to the structure that was used to register the new cipher at the Crypto APIL.

Netlink As shown in figures 3.1 and 3.2 the kernel module is only used as middleman
in the TresorSGX architecture. In the early phase of this thesis (October 2015) it was
assumed that enclaves can be executed in kernel space and therefore a kernel-only archi-
tecture can be achieved. However, during the detailed analysis of the SGX Programming
Reference [25] it became clear that this is not possible. The enclave must be initialized
in kernel space, but an enclave enter can only happen in user space. This is achieved
by a daemon, described in section 3.3.3. To communicate with the daemon Netlinks are
used. In our scenario most of interaction is initiated by the kernel module. Other possibil-
ities (2.3.2) to exchange data between user and kernel space are based on the assumption
that the interaction is initiated by the usermode application. This is not the case with
the TresorSGX architecture, therefore Netlinks are used because it allows bidirectional
communication.

The Generic Netlink subsystem manages the Linux Kernel Netlink communication. A
Generic Netlink Family is defined which acts as server for messages on the Netlink bus. To
act on messages on the Netlink bus an operation, a callback function, must be registered.

The Tresor message structure, as shown in Listing 3.5, contains the crypto operation
(setkey, encrypt, decrypt), a char array which contains the payload and the length of the
payload. The policy defines a single attribute and the length of the message structure. The
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/* Tresor Netlink message struct =/
struct tresor_nl_msg {
unsigned int operation;
unsigned int text_len;
char text [32];
}i

/+ Tresor Netlink message attributes =/
enum {

TRESOR_NL_ATTR1_MSG,

_ TRESOR_NL_ATTR_MAX,
}i

/* Tresor Netlink family definition =/
static struct genl_family tresor_nl_gnl_family = {
.id = GENL_ID_GENERATE, // genetlink generates an id

.hdrsize = 0,

.name = "TRESOR_NETLINK",
.version = 1,

.maxattr = _ TRESOR_NL_ATTR_MAX,

bi

Figure 3.5.: TresorSGX Netlink Family Definition

Netlink family definition contains the name TRESOR_NETLINK, the family version (can
be used to invalidate old implementations) and the maximum attributes.

The Netlink operation TRESOR_NL_ CMD is defined as shown in Listing 3.6. If a message
is read on bus for family TRESOR_NETLINK, it will be validated with the
tresor_nl_gnl_policy. Then the callback function tresor_nl_cmd is called
which parses the incoming message.

When the Tresor daemon writes to the Netlink bus for the Tresor family the port id of the
daemon is saved. This port id is used for later communication with the daemon.

A main problem during the Netlink implementation was that the documentation and most
available usage examples were written for a Linux kernel older then the 4 years old version
3.2. The most promising Netlink example repository was updated® with support for up-
to-date kernel versions to generate some value for the open source community.

Program flow During the design and implantation of the kernel module different chal-
lenges had to be overcome. The main problem is that the cryptography user is a transfor-
mation request at the kernel module, but the provider of the cryptographic function is the
enclave which is not callable by the kernel module. The kernel module sends a message,
which contains the request of the user to the daemon as described in Figure 3.2. The
control flow is then broken, because the daemon parses the message, performs the trans-
formation and sends a message back to the kernel which triggers the Netlink callback

8https://github.com/mdcb/kernel-howto/commit/750468b56ab7effb0219b3afbbec3c0a2824c8fd
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/* Tresor Netlink callback function for message parsing =/
int tresor_nl_cmd(struct sk_buff *skb_2, struct genl_info xinfo)
{

/* message parsing x/

}

/* Tresor Netlink message policy =/
static struct nla_policy tresor_nl_gnl_policy[TRESOR_NL_ATTR_MAX + 1] =
{
[TRESOR_NL_ATTR1_MSG] = { .len = sizeof (struct tresor_nl_msgqg)},
}i

/* Tresor Netlink operation definition */

static struct genl_ops doc_exmpl_gnl_ops_echo[] = {
{
.cmd = TRESOR_NL_CMD,

.flags = 0,
.policy = tresor_nl_gnl_policy,
.doit = tresor_nl_cmd,

.dumpit = NULL,
b
}i

Figure 3.6.: TresorSGX Netlink operations definition

function in the kernel.

The Netlink callback function is completely unrelated to the Crypto API transformation
function of the kernel module. One challenge is to guarantee that the Crypto API callback
functions are able to return the payload of the daemons Netlink messages. In Figure 3.7 a
lock based approach is shown which describes that functionality.

A mutex is used to guarantee that only one crypto API at a time is using the Netlink
interface to exchange data with the daemon. The mutex is locked when a Crypto API
function is called. In Figure 3.7 it is shown with an encryption call. A mutex can only
be locked when it was previously unlocked. The process will block and sleep until the
mutex becomes available for locking. When the mutex is locked a Netlink message is
send to the daemon. The kernel module’s crypto API callback function will then wait for
a completion object to complete.

The daemon will parse the Netlink message, and in this example it will call the enclaves
encryption routing with the plaintext data. The enclave returns the encrypted data to the
daemon. The daemon will send a Netlink message, containing the encrypted data, to the
kernel module were it will trigger the Netlink callback function.

The kernel module’s Netlink callback function parses the message, copies the encrypted
text to a global variable and completes the completion object. This releases the waiting
encryption function. The encrypted data is copied to the destination given in the Crypto
API call, the mutex is unlocked and the function returns.
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Figure 3.7.: Control flow inside the kernel module during a Crypto API encryption call

This flow guarantees that it is not possible to interrupt a single cryptographic routine via
concurrent events.

Crypto API Testmgr

The Crypto API testmanager’ can be used to perform tests on numerous crypto algo-
rithms. To add a new cipher to the testmanager its information must be added to the
alg_test_desc structure. The structure for echb mode tresor can be seen in Listing 3.8.

As described earlier it is sufficient enough to just implement the block-cipher. The crypto
API manages the logic behind the ECB mode and other modes. The defined vectors and
counts are the same as the normal AES cipher, because Tresor depicts the normal AES

cryptography.

“http://Ixr.free-electrons.com/source/crypto/testmgr.c
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.alg = "ecb(tresorsgx)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = aes_enc_tv_template,
.count = AES_ENC_TEST_VECTORS
b
.dec = {

.vecs = aes_dec_tv_template,
.count = AES_DEC_TEST_VECTORS

Figure 3.8.: Crypto API testmgr TresorSGX test definition

#include <linux/crypto.h>
alg_test ("ecb(tresorsgx)", "ecb(tresorsgx)",0,0);

struct crypto_cipher xtfm = NULL;

tfm = crypto_alloc_cipher ("tresorsgx", 0, 16);
crypto_cipher_setkey (tfm, test_key_ 128, key_len)
crypto_cipher_encrypt_one(tfm, testResult, testVector);

Figure 3.9.: Tresor Test kernel module function calls to the Crypto API

To use the modified testmanager the kernel must be compiled and the system must boot
the modified kernel. For Tresor functionality it is not required to modify the testmanager
because it is only used for debugging and evaluation purposes. However, if Tresor is
modified to use the sealed salt, the key from the Crypto API set key function will be
altered with the salt. Therefore the testmanager will return an error because the encrypted
vectors do not match the raw AES encrypted vectors.

Tresor Test LKM

To test the TresorSGX architecture a Linux kernel module was developed. It contains
calls to execute the testmgr with the TresorSGX cipher as well as methods to call the
cipher directly via the Crypto API as shown in Listing 3.9.

The test kernel module calls the test function with the algorithm defined in the testmgr
declaration. This function returns either null or an error if the test failed. Furthermore,
information to the kernel log are written if the test fails.

The Crypto API provides a transformation structure which is allocated with the tresorsgx
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ciphername, the algorithm type and cipher mask'®. Then the key is set at the Crypto
API and the transformation can be used for encryption and decryption. In the example in
Listing 3.9 TresorSGX is used to encrypt raw blocks without any special modes like ECB
or CBC.

3.3.3. Daemon

The daemon is the middleman between the kernel module and the enclave. The main
tasks are the Netlink communication and the enclave management. The daemon is started
by the kernel module with the help of the user mode helper API or manually by the user.
During the initialisation phase the daemon creates the enclave with the help of the Intel
SGX SDK. When the enclave creation has succeeded it sends a register message of type
TRESOR_NETLINK to the Netlink bus. That initiates the register routine at the kernel
module, which saves the daemons port id for later communication. The daemon waits in
a loop for new Netlink messages which will be parsed and analysed. It exits the loop if
an exit message is send by the kernel module or a signal interrupt is send.

Netlink Because of the improved reliability and usability the Netlink Protocol Library
Suite is used to exchange Netlink messages. The library consists of multiple modules
which handle the socket creation, message parsing, sending and receiving. Furthermore,
it is possible to target network interfaces and route TCP/IP packets, but that was not the
scope in this work. The Netlink library provides multiple additional features like sequence
checks or auto-acknowledge messages which can be used to improve the stability of the
protocol and for purposefull error handling. In this scenario these features were disabled,
because they produce an overhead which reduces performance.

Enclave Management As described in the SGX technology section 2.1.5 a custom
enclave can only be started with a launch key from the Intel launch enclave. In the SGX
SDK section 2.1.6 the enclave building process is characterised which allows the execu-
tion of the custom enclave. Although, it is possible to execute the launch enclave, retrieve
the custom launch key and launch the custom enclave without the help of the SDK tools'!,
but that was not the scope of this work either. The sgx_urts library was used to create the
enclave. This triggers the Intel SGX AESM Service which manages the architectural en-
claves, for example the launch enclave which returns the launch key for Tresor enclave.
By using the procedure described in section 2.1.5 the enclave is created and initiated. The
daemon retrieves from the sgx_ create_enclave function the enclave ID, the launch
token and the information if the launch token was updated (if it was an valid token in the
first place). The enclave functions are called by using the files generated by the edgerSr.

1Ohttp://Ixr.free-electrons.com/source/include/linux/crypto.h#1.1440
https://github.com/jethrogb/sgx-utils
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When configuring TresorSGX to use the sealed cryptography the daemon loads a sealed
file on a set key operation. It reads a file from a defined location and sends its content
with the Crypto API key to the enclave. In the enclave that file is unsealed and the salt is
used as input for the password based key derivation function. If the file cannot be read a
null-file is send to the enclave, which generates a new salt. The sealed file must be saved
when the enclave’s set key function returns. If the seal file is lost or modified, is will
not be possible to restore the sealed salt. That results in a new cryptographic key for the
following operations, even if the user password is the same.

Set key by pipe To harden the security of the communication it is possible to set the
key directly at the daemon using a FIFO file. The FIFO file is similar to a standard pipe,
but not anonymous. If the daemon is configured to use the key setting by pipe it will open
a pipe during its initialisation and wait for the key. The user of the cryptographic system
must send the key to that opened named pipe. This can be done by echo "password"
» /tmp/tresorsetkey or more securely via the setkey tool which hides the user
input and clears all buffers.

3.3.4. Enclave

The enclave is the trusted computing base in this cryptographic architecture. Whereas by
default Crypto API must trust the whole kernel that no one tries to extract the key from
memory, the key is save in the enclave. The enclave provides access to 4 trusted functions.
These functions can be called by anybody, not only the daemon. In this architecture the
enclave provides 2 initialisation functions which allow the key setting, an encrypt and a
decrypt function. These functions are trusted and with the help of the edger8r are files
created which allow the function usage from the outside. The edger8r generates these
files based on the EDL file shown in Listing 3.10.

The enclInitCrypto sets the key when sealed cryptography is disabled. Its param-
eters are the algorithm identifier (AES 128bit, 192bit, 256bit) and the key itself which
must be key_len bytes long. The edger8r builds functions which check and copies
these fields to save memory regions, which can be accessed by the enclave (for example,
the pointer cannot point in another enclave area).

The enclInitSealedCrypto extends the normal initialisation with a buffer that con-
tains the sealed file. The length of the buffer must be defined with buf__1en for the input.
If the enclave must generate a new seal, it copies it to the location of the buffer and writes
length information to seal_len. However, the buffer must be at least the same size as
the output seal. The user of the enclave must make sure to allocate enough memory for
the buffer. The seal which contains as payload 3 32bit integers is 616bytes long.

The encryption and decryption functions have parameters for the input and output blocks
as well as parameters for the block lengths. Untrusted functions are calls from the en-
clave to the host application. During the implementation some debugging functions were
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untrusted {};

}i

enclave {
trusted {
public int enclInitCrypto (
char algorithm,
[in, size=key_len] unsigned char xkey,
size_t key_len);
public int enclInitSealedCrypto (
char algorithm,
[in, size=key_len] unsigned char =xkey,
int key_len,
[in,out, size=buf_len] unsigned charx buf,
int buf_len,
[out] int =xseal_len);
public void enclEncrypt (
[in, size=in_len] unsigned char * in,
size_t in_len,
[out, size=out_len] unsigned char
size_t out_len);
public wvoid enclDecrypt (
[in, size=in_len] unsigned char * in,
size_t in_len,
[out, size=out_len] unsigned char
size_t out_len);
}i

Figure 3.10.: Tresor enclave EDL file for edge interface creation.

69




3.3. IMPLEMENTATION

usefull, but they are not essential in the final version.

AESNI As summarised in Section 3.2.3 it was not possible to include a fully featured
cryptographic library like OpenSSL or mbetTLS in the enclave. The limitations of SGX
are to strict and a modification of an entire crypto library is out of scope for this work.
However, it was possible to link against the compiled assembly of the official Intel AESNI
library which provides AES encryption and decryption for different key sizes. The usage
of the AESNI library is straight forward and works flawless.

PBKDF2 To add some sort of 2-factor authentication the sealing functionality of SGX
was used. As described in the SGX sealing Section 2.1.5 it is possible to encrypt data with
the identity of the enclave or the identity of the enclave signer. Sealing with the enclave
signer is a good model if someone expects the enclave to change because of updates or if
multiple enclaves should be able to decrypt the data. TresorSGX uses the enclave identity
sealing to guarantee that only this one enclave on this machine is able to decrypt the
sealed data. In that sealed data is a salt and configuration parameters are saved. The salt
is generated in the enclave using a sgx crypto function.

The Password Based Key Derivation Function 2 (PBKDF2)[36] applies a Hash-based
message authentication code (HMAC) to the password (key) and the salt in the enclave.
The HMAC is iterated many times to harden the pseudo random function against brute-
force attacks. Neither the HMAC nor the PBKDF2 algorithm are included in an Intel
SGX SDK library. For TresorSGX algorithms from a public domain project were used'2.

To generate the same encryption key with the same salt and password the number of
iterations must also be the same. Therefore, the iterations are also sealed with the salt
for later use. The iterations of the pseudo random function in TresorSGX are defined to
50.000 which can be modified before compiling.

Tresor Tester A host testing application is used to provide quick test and debug cycles.
It implements the same functionality as the daemon and therefore allows direct debugging
via the console. It also includes testvectors to analyse the correctness of the encryption
and decryption functionality.

3.3.5. Usage

The usage of TresorSGX should be as easy as possible. Difficult cryptography software
will be circumvented by an user because the additional effort will not result in visible
value. Therefore, a cryptographic system must be embedded as ubiquitous as possible.

Zhttps://github.com/ctz/sgx-pwenclave
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Setup TresorSGX TresorSGX consists of multiple components which must be com-
piled and configured. A standard configuration is set in the tresorcommon.h. This
configuration should be adequate for most users. For increased usability the set-key-by-
pipe is disabled by default. This allows the usage of TresorSGX without further user
interaction with the cryptographic system. In the default configuration sealing is acti-
vated. For increased security it is highly recommended to change the path of the seal to
some removable or mounted network storage. This guarantees the confidentiality of the
encrypted data even if an attacker is able to recover the user-key and the computer itself.

The following steps are needed to install TresorSGX:
1. (optional) modify the configuration of TresorSGX
2. (mandatory) build the TresorSGX LKM, Daemon, Enclave
3. (optional) copy files to the location defined in the configuration
4

. (optional) add the TresorSGX LKM to /etc/modules to load the module on
system boot

(mandatory) load the TresorSGX LKM into the kernel

e

6. (optional) build and load the Test TresorSGX LKM to test the cryptographic system

Setup Encrypted Partition To use TresorSGX to encrypt a whole partition the com-
mandline interface cryptsetup for dm-crypt'? is used. A device mapper provides a virtual
layer on top of block devices. The device mapper dm-crypt provides an encryption layer
which uses the Crypto API. All writes to the block device through this layer will be en-
crypted and the reads will be decrypted with a symmetric cipher.

Such symmetric cipher is TresorSGX which is registered in the Crypto API after initialisa-
tion. To use dm-crypt its kernel module must be loaded with modprobe dm_mod. The
following line will setup the cryptographic cipher tresorsgx for the partition /dev/sdbl
with a keysize of 128bit.

cryptsetup create tresor /dev/sdbl -cipher tresorsgx -key-size
128

The user is asked to insert a password by cryptsetup. This password will be hashed by the
cryptsetup and then send to the Crypto API set key function. This function forwards the
key to the registered set key function by the TresorSGX LKM.

The key is retrievable from RAM during this time, for additional security the key set by
pipe tool should be used. In that case the user-key must be set during the launch of the
daemon. The key which is passed to the cryptsetup will be discharged in that case.

The cryptsetup maps the layer to the directory /dev/mapper/tresor. This layer
works like the raw /dev/sdbl. When mapping the encrypted partition the first time a
filesystem must be initialised:

Bhttps://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt
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mkfs.ext2 /dev/mapper/tresor
Afterwards the layer can be mounted with:
mount /dev/mapper/tresor /media/tresor/

All writes to /media/tresor will be encrypted and all reads will be decrypted using
TresorSGX. When using the sealed cryptography it is only possible to successfully use
the partition when the seal is loaded into the enclave, the user-key is set and the enclave
is running on the same machine which were used to create the seal in the first place.
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The evaluation of the implemented TresorSGX architecture consists of an usage, correct-
ness, performance and security analysis. The correctness of the AES cryptography of
TresorSGX is verfied with standard tools and custom test cases. The performance anal-
ysis compares TresorSGX to standard Linux AES cryptography and direct unencrypted
storage access. The security analysis gives an overview about possible threats and vulner-
abilities.

4.1. TresorSGX usage

The Tresor enclave is accessed via the interface build by the Intel SGX SDK library.
This helper functions provide the edge functions to enter the enclave. As described in
Section 2.1.6 these interfaces are build by the edger8r Tool. The generated interfaces are
open for examination. The edger8r Tool fulfilled its use in the development of TresorSGX
without any restriction. It was not necessary to modify the generated interfaces at any
time.

The Tresor enclave can be used for other applications than the Tresor daemon, too. It
provides a trusted base for encryption and decryption operations. By using the standard
interfaces, which were modelled following existing cryptographic libraries, the enclave
can be included without much modification.
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The usage of the daemon over the Netlink bus is reserved for the daemon at this state of
SGX. Nevertheless, it is possible to modify the daemon for exchanging data with other
user-space applications, like e.g. the Intel AESM Service.

The Tresor kernel module registers the TresorSGX cipher at the Crypto API. That allows
the usage by different components of the Linux kernel and user space. A very user friendly
approach is to setup a new partition, using cryptsetup and the TresorSGX cipher. The
cryptsetup will map a device to the physical partition. When accessing the created device
the data will be encrypted on the fly with TresorSGX. To secure the user-key additionally
it is recommended to set the key by using the pipe with help of a small key-set tool. The
security characteristics are discussed in Section 4.4.

4.2. Correctness

The correctness of the TresorSGX architecture regarding the encryption and decryption
can be tested with different tools.

The Crypto API testmgr(3.3.2) is implemented in kernel space and uses the Crypto API.
It initiates the crypto cipher and sets the key using the Crypto APIL. It iterates different
keysizes and blocksizes during the test. Encrypted and decrypted data is compared to
predefined testvectors. If all tests pass the testmgr returns zero, otherwise it will print an
error message to the syslog and returns an error code. To use the testmgr with TresorSGX
the kernel must be recompiled with the patched testmgr. The testmgr is disabled in the
default kernel configuration, so it must be enabled. The testmsg is called in kernel space
with ret = al_test ("ecb (tresorsgx)", "ecb (tresorsgx)",0,0);.

However the testmsg returns only zero if the encrypted data is equal to the predefined
testvectors. When using the PBKDF2 with the key and the salt as input the data will be
encrypted with another key than the key which was send by the Crypto API. The testmgr
will return an error in that case. To test the cryptography despite the different keys, the
enclave was modified to print the PBKDF?2 derived encryption key to the host application.
This key was used to decrypt without PBKDF?2 the prior PBKDF2 encrypted data which
worked successfully.

The same test model applies to the scenario where the key is set by the pipe. As in the
original Tresor the Crypto API key works only as dummy key and has no functionality in
that case. The testmgr can only be used if the Crypto API key on standard AES encryption
is used.

It was possible to decrypt and encrypt partitions over multiple days so TresorSGX is
capable of securing long term storage which is bound to the same CPU, seal, enclave and
user-key.
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Test Plain AES TresorSGX
dd 100mb block write 107 104.5 1.1

hdparm uncached read 110.14 113.7 1.125
hdparm cached read 13289.53 | 12004.325 | 1576.69

Table 4.1.: Performance tests of TresorSGX in MB/s

4.3. Performance

TresorSGX was compared to the standard AES implementation in the Linux Kernel and
the plain access to the storage system. The testing platform was a 2015 Dell Inspiron
7559 with an Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz, 16GiB System memory
and a Seagate STI000LM024 HN-M hard drive. The operating system was an Ubuntu
15.10 running the Linux kernel version 4.4.7.

The performance of the original Tresor[46] is close to the standard AES implementation.
When designing TresorSGX it became clear that the multi layered approach will result in
many context changes which decreases the performance. The tests proved this assump-
tion. Table 4.1 shows the results of three different tests in MB/s. The test script and the
full results can be found in Appendix B.

Performance Tests Three different partitions were mounted on the same hard disk
for the evaluation. 24 tests were executed before calculating the median of the results. The
Linux dd' tool was used to analyse the write performance and hdparm? for measuring the
read performance.

dd was executed with the parameters:
dd if=/dev/zero of=/media/$NAME/tempfile bs=100M count=1
conv=fdatasync, notrunc

That results in a physical not truncated write of one file with the size of 104857600 bytes.
dd returns the time and the average write speed for that operation.

hdparm was executed with the -t and -T option. The first option performs uncached disk
reads. The buffer cache is cleared before performing the read. The second option performs
cached reads, which displays the reading speed from the Linux buffer cache without disk
access.

TresorSGX achieves about 1% of the read / write performance on disk and about 10%
the read performance from the buffer cache. To write one block encrypted on disk the
system must send the data block over the Netlink bus to the daemon. The daemon must
enter the enclave, which is another context switch. The enclave encrypts the block using
the AESNI instructions. The enclave returns the encrypted block, which is send over the

Thttp://linux.die.net/man/1/dd
Zhttp://linux.die.net/man/8/hdparm
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Netlink bus back to the Tresor kernel module. However it was not the scope to achieve
the same performance like the original Tresor. TresorSGX works as proof of concept and
its performance can be improved in future work.

Performance Improvements Other researchers compared the performance of the
Linux Netlink to other communication channels like SYS V Message Queues and SYS V
Shared Memory[56]. Compared to the SYS V Message Queues is the Netlink user-to-
kernel communication 30% , kernel-to-user communication 55% slower and the startup
time 66% slower in terms of processor cycles. SYS V shared memory has an even higher
throughput but a longer startup time than the message queues.

In another test the SYS V IPC, UNIX pipe and UNIX sockets were compared’. The best
latency and throughput were achieved using the UNIX pipe. However increasing the
blocksize of the transmitted data lead to better results of the UNIX socket. It heavily
depends on the individual configuration. The single block cryptography sends very small
chunks of data over the Netlink, increasing the blocksize will result in a better throughput
of the system. Alternatively it is possible to exchange the Netlink interface with a better
suited communication channel.

4.4. Security

The security properties of the original Tresor[46] were guaranteed by saving the encryp-
tion key securely in the CPU debug registers. The Linux kernel is patched to secure these
registers from unauthorized access. However, by exploiting the IDT Blass and Robertson
[4] were able to recover the saved encryption key using DMA attacks. TresorSGX must
guarantee at least the same security principles as Tresor.

In TresorSGX the encryption key is only generated inside the enclave. At no point in
the lifecycle the encryption key is known to the outside world. The sealed salt is gen-
erated randomly and also unknown to any other component than the enclave. With this
architecture it is not possible to recover the encryption key.

However, it is possible to execute attacks on TresorSGX which allows the decryption of
encrypted data. An attacker must obtain the following components of the cryptographic
system:

e user key / password
e scaled salt
e Tresor Enclave which sealed the salt

e CPU which sealed the salt

3https://sites.google.com/site/rikkus/sysv-ipc-vs-unix-pipes-vs-unix-sockets
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The user-key and the sealed salt are used as Input for the PBKDF?2 to generate the encryp-
tion key. Furthermore, an attacker must be able to execute the Tresor enclave on exactly
that CPU, where the salt was sealed. That hardens the encryption because it is not suf-
ficient to know the user key on its own (as in the original Tresor or other cryptographic
systems). TresorSGX is therefore a multi-factor cryptographic system.

(decrypt encrypted Data)

system running cold boot attack possible

n n
y y
userKey set by Crypto API, not by pipe

n
y
seal available in RAM

n
y

cold boot attack on seal & userKey

y_ root partition not encrypted

n
y

modify kernel or Tresor Daemon

1 |

sniff userKey & seal

y root access

y
n
gain root access
access to computer
n
y
TresorSGX, enclave, seal, userKey available
n
y
initiate enclave and set key
@ecrypt data with TresorSG)D Cno decryption possible)

Figure 4.1.: Flowchart of an attack to decrypt encrypted data.

In Figure 4.1 a possible attack flow is shown. The goal is to encrypt TresorSGX encrypted
data. It is assumed that TresorSGX is currently not running and the encrypted partition
is not mounted. If the system is not running a cold boot attack could be carried out. The
Linux Memory Extractor (LIME)* was used to analyse the full RAM of the testsystem

*https://github.com/504ensicsLabs/LiME
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after setting the user-key. When setting the key with the tool cryptsetup to initialise an
encrypted partition, the user key can be retrieved from multiple locations in RAM.

The original Tresor mitigated this problem by using the sysfs virtual file system, to directly
send messages to the kernel module. In TresorSGX the daemon is used to send keys to
the enclave. A pipe model was used to secure the user key. The user key which was send
using the pipe to the daemon could not be retrieved with LiME.

Another component which could be retrieved from RAM is the sealed salt. An enclave
can not read a file directly, therefore the daemon must load the file and pass it to the
enclave. During that time the sealed data is in unprotected memory and can be retrieved.
To increase the security of TresorSGX it is recommended to save the sealed salt on a
removable storage which is only connected to the computer when TresorSGX is used.

Another threat model is the modification of the Linux kernel and user applications. If an
attacker is able to obtain root rights, it is easy to modify the untrusted parts of TresorSGX.
This allows the sniffing of the user-key and the sealed salt. When an attacker has obtained
these two components he is able to initialise TresorSGX with the credentials. The access
to the CPU and the enclave (which were used to seal the salt must be given). Otherwise it
is not possible to unseal the salt.
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In this final chapter the findings are summarised and a conclusion is drawn. During the
analysis of Intel SGX and the design / implementation of TresorSGX additional SGX
documentation, tools, examples were released. The SGX SDK was made available in
January 2016, which allowed the usage of SGX on real hardware.

5.1. SGX Development

The Intel Software Guard Extensions require much more development effort than normal
applications because of the strict SGX security properties. As described in section 2.1.10
different limitations which prohibit a direct inclusion of libraries exist. The libraries must
not execute operations which can be used to weaken the security of enclave or the host
operating system / virtual machine.

The limitations due to the restricted operations and functions were quickly reached dur-
ing the implementation of TresorSGX. It was neither possible to use the OpenSSL library
nor the more modular mbedTLS library. It would ease the development of secure en-
claves if fully featured SGX conform cryptographic libraries were available. 40% of the
TresorSGX development time were donated to analyse, validate and implement different
cryptographic libraries in the enclave.

The main advantage of SGX is that it allows to exclude a defined part of an application

79



CHAPTER 5. CONCLUSION AND FUTURE WORK

into a secure enclave which is save from modification, observation and can be remote
attestated. The main use-case is to create trust with the small TCB of the enclave for
executions on possible malicious hosts. However, side channel (see section 2.1.9) attacks,
which modify the operating system or the host application, are able to recover confidential
data. The enclave developer must be aware of the trade-off that is accompanied with a
small TCB and large untrusted host application.

The Intel SGX SDK (see section 2.1.6) contains the required Launch enclave as well as
additional libraries and enclave building tools. Although these tools and libraries are not
required to execute an enclave (see section 2.1.7 for more information) they increase the
development speed by generating edge proxies between the enclave and the host applica-
tion, as well as checking the enclave for errors or security risks during the signing process.
However, the Intel Launch enclave is still mandatory for initialising a custom enclave.

The requirements for obtaining a production license, described in section 2.1.11, demand
a complex and secure development environment and key management. Furthermore, an
enclave developer must create a distribution system which also distributes the Intel SGX
platform software beside the actual application. It remains to be seen if proposed use-
cases in papers and patents(2.1.8) will be brought the the consumers under these condi-
tions.

5.2. SGX Enabled Tresor

The scope of this thesis was to provide a Linux kernel functionality in an Intel SGX
enclave. As a proof of concept the cold-boot resistant cryptographic system Tresor by
Miiller et al. [46] in a SGX context was developed. The kernel Crypto API is able to per-
form cryptographic operations using this new cipher. The security guarantees of the orig-
inal Tresor are kept. Furthermore the encryption is hardened by multiple factors (CPU,
enclave, seal) which must be present to generate the same encryption key again. Also it is
not possible to gain access to the encryption key or the salt if the enclave is not modified.

In the early phase of this system should be an example for the isolation of Linux kernel
components completely in kernel space. However, as described in the SGX lifecycle
section 2.1.5 it is by design of SGX not possible to enter an enclave from kernel space.

Therefore, the three layered architecture, proposed in section 3.3 is introduced. Like the
original Intel SGX SDK a kernel module is used for the privileged instructions and for
registering the cipher at the Crypto API. A daemon is used to manage the enclave and call
trusted enclave function. The communication between the kernel module and the daemon
is achieved by using the Netlink interface. Netlink provides bidirectional messaging but
suffers from a low message throughput as evaluated in section 4.3.

By using sealing techniques to save a salt which can be used in password based key
derivation function (PBKDF2), it is possible to generate an encryption key which only
exists in the enclave. This key cannot be optained or generated by the outside world. With
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TresorSGX encrypted data can only be decrypted if the user inserts its user password to
the enclave and the enclave unseals successfull the salt. The salt is sealed using the
identity of the enclave. That means that a modified version of the enclave is not able to
unseal the data. Furthermore, be the enclave must executed on the same CPU as the data
was sealed because the CPU specific key is also used for sealing.

In the original Tresor it was possible to obtain the key by using sophisticated attacks like
TRESOR-HUNT by Blass and Robertson [4] or modifying the Linux kernel directly. With
TresorSGX such an attack would not lead to the extraction of the encryption keys, because
these are not known to the untrusted operating system.

5.3. Isolation of OS Components with SGX

As previously described it is not possible to execute the enclaves in kernel space. There-
fore, the main approach of isolating operating system components with the Intel Software
Guard Extensions is not viable in kernel space. The approach must be adapted to move
functions worth protecting into an enclave running in user space.

Today no other approach is known to use SGX to secure kernel components in user space
enclaves. The TresorSGX model is a first approach which analyses the conditions, dif-
ficulties and consequences of moving a kernel component into an user space enclave.
Although the security of the AES cipher was increased by providing in the TresorSGX
architecture, the usability and performance suffered.

5.4. Future Work

The Intel Software Guard Extensions were only recently made available to the research
community. That opens different research topics. As described in section 2.1.8 multiple
use-cases for SGX exist. Companies declared patents for shielded execution techniques,
policy based configuration, identification, attestation and digital rights management pur-
poses. These fields of application imply chances for increased security as well as reduced
freedom for the device owners. It has to be decided how far a company is allowed to go
to secure its content and devices against the user who paid for these devices or services.

However SGX includes other technical challenges which can be addressed by researchers.
As described the enclave system is very limited regarding available C functions. Libraries
like OpenSSL and mbedTLS cannot be executed because they are calling unsupported
functions or syscalls which are not allowed. It would ease the development of security
related tools if a full featured cryptographic library can be used in enclave space.

To port existing libraries into the enclave, a layer around unsupported ¢ functions would
be helpfull. The Intel SGX SDK c library could be extended with implementations for
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these unsupported functions. However some functionality which cannot be wrapped and
emulated (e.g. fork) will not be possible because of the design of the SGX enclave.

TresorSGX security characteristics are superior to these of the standard cryptographic
modules. The system could be improved regarding its performance to be on a par with
the original Tresor implementation or other encryption ciphers. With the current imple-
mentation it is not possible to encrypt a complete system with TresorSGX because the
daemon must be executed in user space. Future work could address this problem and pro-
vide solutions where the SGX enabled encryption is used for the complete Linux system.
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BACKGROUND

A.1. Intel SGX

#include "sgx_edger8r.h" /+ for sgx_satus_t etc. x/
#include <stdlib.h> /% for size t */

sgx_status_t ecall_changeBuf (
sgx_enclave_id_t eid,
char+ buf,
size_t len);

Figure A.l.: enclave_u.h untrusted proxy declaration
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#include "enclave_u.h"

typedef struct ms_ecall_ changeBuf_t {
charx ms_buf;
size_t ms_len;

} ms_ecall_changeBuf_t;

sgx_status_t ecall_changeBuf (sgx_enclave_id_t eid, charx buf,size_t len)
{

sgx_status_t status;

ms_ecall_changeBuf_t ms;

ms.ms_buf = buf;

ms.ms_len = len;

status = sgx_ecall(eid, 0, &ocall_table_enclave, &ms);

return status;

Figure A.2.: enclave_u.c untrusted proxy definitions

#include "sgx_edger8r.h" /« for sgx_ocall etc. */

void ecall_changeBuf (charx buf, size_t len);

Figure A.3.: enclave_t.h trusted proxy declaration
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/* sgx_ocfree() just restores the original outside stack pointer. =*/
##define OCALLOC (val, type, len) do { \
void+ _ _tmp = sgx_ocalloc(len); \
if (__tmp == NULL) { \
sgx_ocfree () ; \
return SGX_ERROR_UNEXPECTED; \
} \
(val) = (type)__tmp; \
} while (0)

typedef struct ms_ecall_changeBuf_t {
char+ ms_buf;
size_t ms_len;

} ms_ecall_changeBuf_t;

static sgx_status_t SGX_CDECL sgx_ecall_changeBuf (voidx pms)
{
ms_ecall_ changeBuf_tx ms = SGX_CAST (ms_ecall changeBuf_tx, pms);
sgx_status_t status = SGX_SUCCESS;
charx _tmp_buf = ms->ms_buf;
size_t _tmp_len = ms->ms_len;
size_t _len _buf = _tmp_len;
char+ _in_buf = NULL;

CHECK_REF_POINTER (pms, sizeof (ms_ecall_changeBuf_t));
CHECK_UNIQUE_POINTER (_tmp_buf, _len_buf);

if (_tmp_buf != NULL) {
_in_buf = (charx)malloc(_len_buf);
if (_in_buf == NULL) {
status = SGX_ERROR_OUT_OF_MEMORY;
goto err;

memcpy (_in_buf, _tmp_buf, _len_buf);
}
ecall_changeBuf (_in_buf, _tmp_len);
err:
if (_in_buf) {
memcpy (_tmp_buf, _in_buf, _len_buf);
free (_in_buf);

return status;

SGX_EXTERNC const struct {
size_t nr_ecall;
struct {voidx ecall_addr; uint8_t is_priv;} ecall_tablel[l];
} g_ecall_table = {
1,
{
{ (voidx) (uintptr_t)sgx_ecall_changeBuf, 0},

}i

Figure A.4.: enclave_t.c trusted proxy definitions g7
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EVALUATION

B.1. Performance test

#!/bin/bash
NAME=testtresor

for i in ‘seqg 1 24%;

do
sudo dd if=/dev/zero of=/media/$NAME/tempfile bs=100M \
count=1 conv=fdatasync,notrunc 2>&1 | tail -n 1

done

for i in ‘seq 1 24%;
do

sudo hdparm -t /dev/mapper/SNAME | tail -n 1
done

for i in ‘seq 1 24%;
do

sudo hdparm -T /dev/mapper/S$NAME | tail -n 1
done

Figure B.1.: performance test script
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Figure B.3.: plain - hdparm -T cached read
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104857600 bytes (105 MB) copied, 1,18115 s, 88,8 MB/s
104857600 bytes (105 MB) copied, 1,02872 s, 102 MB/s
104857600 bytes (105 MB) copied, 0,966114 s, 109 MB/s
104857600 bytes (105 MB) copied, 0,965683 s, 109 MB/s
104857600 bytes (105 MB) copied, 0,966563 s, 108 MB/s
104857600 bytes (105 MB) copied, 0,997715 s, 105 MB/s
104857600 bytes (105 MB) copied, 0,989554 s, 106 MB/s
104857600 bytes (105 MB) copied, 0,981488 s, 107 MB/s
104857600 bytes (105 MB) copied, 0,994705 s, 105 MB/s
104857600 bytes (105 MB) copied, 0,954451 s, 110 MB/s
104857600 bytes (105 MB) copied, 0,995095 s, 105 MB/s
104857600 bytes (105 MB) copied, 1,02202 s, 103 MB/s
104857600 bytes (105 MB) copied, 1,1182 s, 93,8 MB/s
104857600 bytes (105 MB) copied, 1,03035 s, 102 MB/s
104857600 bytes (105 MB) copied, 1,0205 s, 103 MB/s

104857600 bytes (105 MB) copied, 1,19903 s, 87,5 MB/s
104857600 bytes (105 MB) copied, 1,33448 s, 78,6 MB/s
104857600 bytes (105 MB) copied, 0,985027 s, 106 MB/s
104857600 bytes (105 MB) copied, 1,00159 s, 105 MB/s
104857600 bytes (105 MB) copied, 1,0296 s, 102 MB/s

104857600 bytes (105 MB) copied, 0,987914 s, 106 MB/s
104857600 bytes (105 MB) copied, 1,03266 s, 102 MB/s
104857600 bytes (105 MB) copied, 1,01218 s, 104 MB/s
104857600 bytes (105 MB) copied, 1,01608 s, 103 MB/s

Figure B.4.: AES - dd test 100M block
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Figure B.5.: AES - hdparm -t uncached read
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Timing cached reads: 21870 MB in 2.00 seconds = 10946.90 MB/sec
Timing cached reads: 22282 MB in 2.00 seconds = 11151.74 MB/sec
Timing cached reads: 25484 MB in 2.00 seconds = 12759.09 MB/sec
Timing cached reads: 27594 MB in 2.00 seconds = 13814.17 MB/sec
Timing cached reads: 27638 MB in 2.00 seconds = 13837.99 MB/sec
Timing cached reads: 24220 MB in 2.00 seconds = 12123.35 MB/sec
Timing cached reads: 25230 MB in 2.00 seconds = 12628.97 MB/sec
Timing cached reads: 27330 MB in 2.00 seconds = 13682.14 MB/sec
Timing cached reads: 18246 MB in 2.00 seconds = 9131.30 MB/sec
Timing cached reads: 25460 MB in 2.00 seconds = 12744.31 MB/sec
Timing cached reads: 25398 MB in 2.00 seconds = 12714.44 MB/sec
Timing cached reads: 27814 MB in 2.00 seconds = 13924.96 MB/sec
Timing cached reads: 22722 MB in 2.00 seconds = 11372.56 MB/sec
Timing cached reads: 22362 MB in 2.00 seconds = 11192.19 MB/sec
Timing cached reads: 22248 MB in 2.00 seconds = 11138.35 MB/sec
Timing cached reads: 22702 MB in 2.00 seconds = 11365.54 MB/sec
Timing cached reads: 22588 MB in 2.00 seconds = 11309.10 MB/sec
Timing cached reads: 23740 MB in 2.00 seconds = 11885.30 MB/sec
Timing cached reads: 23426 MB in 2.00 seconds = 11725.43 MB/sec
Timing cached reads: 22756 MB in 2.00 seconds = 11393.50 MB/sec
Timing cached reads: 17574 MB in 2.00 seconds = 8799.93 MB/sec
Timing cached reads: 26858 MB in 2.00 seconds = 13448.88 MB/sec
Timing cached reads: 27634 MB in 2.00 seconds = 13834.35 MB/sec
Timing cached reads: 28184 MB in 2.00 seconds = 14110.11 MB/sec

Figure B.6.: AES - hdparm -T cached read
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Figure B.7.: TresorSGX - dd test 100M block
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Timing buffered disk reads: 4 MB in 3.41 seconds = 1.17 MB/sec
Timing buffered disk reads: 4 MB in 3.58 seconds = 1.12 MB/sec
Timing buffered disk reads: 4 MB in 3.57 seconds = 1.12 MB/sec
Timing buffered disk reads: 4 MB in 3.53 seconds = 1.13 MB/sec
Timing buffered disk reads: 4 MB in 3.71 seconds = 1.08 MB/sec
Timing buffered disk reads: 4 MB in 3.61 seconds = 1.11 MB/sec
Timing buffered disk reads: 4 MB in 3.58 seconds = 1.12 MB/sec
Timing buffered disk reads: 4 MB in 3.61 seconds = 1.11 MB/sec
Timing buffered disk reads: 4 MB in 3.52 seconds = 1.14 MB/sec
Timing buffered disk reads: 4 MB in 3.51 seconds = 1.14 MB/sec
Timing buffered disk reads: 4 MB in 3.68 seconds = 1.09 MB/sec
Timing buffered disk reads: 4 MB in 3.57 seconds = 1.12 MB/sec
Timing buffered disk reads: 4 MB in 3.46 seconds = 1.15 MB/sec
Timing buffered disk reads: 4 MB in 3.55 seconds = 1.13 MB/sec
Timing buffered disk reads: 4 MB in 3.60 seconds = 1.11 MB/sec
Timing buffered disk reads: 4 MB in 3.47 seconds = 1.15 MB/sec
Timing buffered disk reads: 4 MB in 3.51 seconds = 1.14 MB/sec
Timing buffered disk reads: 4 MB in 3.63 seconds = 1.10 MB/sec
Timing buffered disk reads: 4 MB in 3.48 seconds = 1.15 MB/sec
Timing buffered disk reads: 4 MB in 3.72 seconds = 1.08 MB/sec
Timing buffered disk reads: 4 MB in 3.57 seconds = 1.12 MB/sec
Timing buffered disk reads: 4 MB in 3.51 seconds = 1.14 MB/sec
Timing buffered disk reads: 4 MB in 3.52 seconds = 1.14 MB/sec
Timing buffered disk reads: 4 MB in 3.55 seconds = 1.13 MB/sec

Figure B.8.: TresorSGX - hdparm -t uncached read
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Figure B.9.: TresorSGX - hdparm -T cached read
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